SAND99-0000 Distribution
Unlimited Release Category UC-705
Printed June 1999

DAKOTA, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Sensitivity
Analysis, and Uncertainty Quantification

Michael S. Eldred
Structural Dynamics Department

William J. Bohnhoff
Simulation Technology Research Department

William E. Hart
Applied Mathematics Department

Sandia National Laboratories
Albuguerque, New Mexico 87185

Abstract

The DAKOTA (Design Analysis Kit for OpTimizAtion) iterator toolkit is a flexible, extensible
interface between simulation codes and iterative systems analysis methods. The toolkit
implements optimization with a variety of gradient and nongradient-based methods, uncertainty
guantification with nondeterministic propagation methods, parameter estimation with nonlinear
least squares solution methods, and sensitivity analysis with general-purpose parameter study
capabilities. By employing object-oriented design to implement abstractions of the key concepts
involved in iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible
problem-solving environment which uses point solutions from simulation codes for answering
fundamental engineering questions, such as “what is the best design?”, “how safe is it?”, or “how
much confidence do | have in my answer?”.

In addition to these iterative systems analysis capabilities, advanced users can employ state of the
art capabilities for (1) exploiting parallelism at multiple levels (coarse-grained and fine-grained)
and (2) building cascaded, nested, concurrent, and/or adaptive strategies which utilize multiple
iterators and models to enact hybridization, sequential approximation, stochastic optimization, or
mixed continuous-discrete optimization.

This report serves as a user’s guide and reference for the DAKOTA software and provides
capability overviews, command specifications, and installation and execution instructions.

Acknowledgment

Development of DAKOTA was funded by the Engineering Science Research Foundation, the
Computer Science Research Foundation, Laboratory Directed Research and Development, the
Surety Defense Programs backbone, and the Accelerated Strategic Computing Initiative.

The development of this software involved many technical staff and contractors across Sandia-
Albugquerque and Sandia-Livermore. The authors would like to recognize Chris Moen, Roy Lee,
Juan Meza, and Charles Tong for their support of the OPT++ library and the SGI platform;
Michael Brayer, Craig Shierling, and Brian Driessen for their help in implementing the IDR
parser within DAKOTA; Jim Schutt for his consultation on IDR capabilities; Bruce Bainbridge
and Vicente Romero for their work on DAKOTA's hondeterministic methods; Todd
Simmermacher for his work on the multidimensional parameter study method and the
continuation method for failure capturing; Brian Dennis and Chris O’Gorman for their work on
the approximation interface class hierarchy; Ron Rhea for his work on the configuration system;
and David Outka for his vision and numerous contributions during the initial stages of the
DAKOTA development effort.

The authors also greatly appreciate the helpful comments made by Ben Blackwell and Todd
Simmermacher during the review process.

Documentation Versions

Since the DAKOTA architecture is flexible and extensible, its capabilities are continuously
evolving. Therefore, the DAKOTA software documentation is a living document for which this
SAND report is one snapshot in time. Updated documentation will be provided with major
software releases.

The software documentation can be published using either hardcopy or online formats. The
hardcopy format is used for generating the SAND report version, whereas the online format is
used for Web publishing of a hyperlinked Portable Document Format (PDF) version. At the time
of printing, the online PDF document is publicly available from

http://endo.sandia.gov/DAKOTA/papers/Dakota_online.pdf

Contact the authors atseldre@sandia.gaf/problems are encountered in accessing this file.

Table of Contents

Table Of CONIENTESuuiiiii e e e e et e e e e 5
LIST Of FIQUIES ... et e ettt e e e e et e e e e e eaan e e eees 14
LIST OF TADIES. ...t e e e e e e e e e e e eearnnee 15
DAKOTA INFOAUCTION. ... eiii e e e e et e e et e e e e e e eaanas 17
1Y) 1)Y= o] o TR Toeeen 1
AT L= LR RS BTN S I I AP 17
B U1 o] 4 - TR PRRPPPPP 19......
GEttiNg STANE.....coi i 19
A basic optimization problem ... 19
Constructing the interface.........ccoovv e 23
Creating a DAKOTA INpUL file......ccooeiieiiiiiic e, 28
RUNNING DAKOTA ...t e e e e e e e e eeees 30
Interpreting the resulls ... 31
Some useful features of DAKOTA ... e 35
Restarting DAKOTA ... a e e e e e e eaes 35
The parallel INTErface ... 36
Decision Tables for DAKOTA Methods and Strategies...........ccoevvvviviiiiiiiciiiiivnninnne. 43
Capability INTrOAUCTIONcoeeiii e 52
Iterator and Strategy HIierarChiesooovvveiiiiicec e 52
Optimization CapabilitieS...........uuuiiiii 54
oo 18 o 1o o ISR S 5
DOT LIDIAIY .ttt e e e e e e e e et e e e et e bb s s e e e e e e e eaaeeeeeeesnnes 54
]S @ T I | o] > oY USSP 55
(O] I N o] = Y USSP 55
Y 1@ I I o] = Y2 56
Uncertainty Assessment Capabilitiescovviiiiiiiiii e 58

DAKOTA Manuals Table of Contents

[y ge]o [1e] l0] o WUTETTE TR S, 5

Monte Carlo Probability ... 58
IMEEAIN VAIUE ...ttt e e e e e e e e e e e e e e e e e eeas 59
Nonlinear Least Squares CapabilitieSccuuiiiiiiiiiiiiiii e 60
INEFOUCTION ...t e e e e e O 6
GAUSS-INEWEON ...ttt e e e e e e e e e e e e e e e e e e e 61
Parameter Study CapabilitieSccuuuiiiiiiiii e 62
INEFOTUCTION ...ttt e e e 2....... 6
INITAI VAIUES ...ttt 63
D= U= W @F= 1= (oo 111 Vo U 63
VeCtor Parameter STUAYooooiiiiiiiiiiei et e e e e e e e e e e as 63
LiSt Parameter STUAYooiiiiiiiee e e e e e e e e e e e e e e e 65
Centered Parameter STUAY.......ccoooo oo e e e e e eees 66
Multidimensional Parameter StUAY..........oooiiiiiiiiiii e 67
Strategy Capabiliiesoooiiiiiii e 70
INEFOAUCTION ...ttt e e e e e e e e e e e s e s aeeees O........ 7
SINGIE METNOM ... e e e e e e e e e e 71
Multilevel Hybrid OptimiZationoooo oo 71
The Uncoupled APProach ... 71
The Uncoupled Adaptive APProachccoovviviiiiiiiiiiiiiiie e 72
The Coupled APPrOAChcooi s 73
Sequential Approximate OPtMIZAtIONccuuviiiiiiiiiiie e 74
Optimization Under UNCEraiNty........cccooeeeiiiiiiiiieeeeiice e 75
Branch and BOUNG...........oiiiiiiiiiiie et 76
Simulation INtEerfacingoooiiiiiiii e 77
Dakota Interface ADSIFACIONcooiiiiiiiii e 77

The Application Interface

DAKOTA Manuals Table of Contents 6

The Direct Function Application INnterfacecccuvvviiiiiiiiiiii 80

3-PIECE INTEITACE.uuiiiiiiiiiiiiiei e e e e 81
1-PIECE INTEITACE. .. .o e et e e e e e e e e e e eeeeeeeeees 81
The System Call Application Interface............oouiiiiiiiiiiii e, 81
3-PIECE INTEITACE. ... ettt 81
1-PIECE INTEITACE.cc e e e a e e e e e e e e e e e e eeeeeaenee 82
Additional Features............cccviiiiiiiiiiiiii 82
FIlE SAVING ...uiiiiii et 82
1 L= = o o [Vo PP 82
Unix temporary fileS ... 83
Common filtering OPErationsSocoeeiiiiiiiiiiiiie e 83
D= 13] 0] 1= 83
The NO_FILTER OPHON.....cccoiiiiiiiieiiiiiiiiiiiee et 83
The named filter OPLioN...........ooi i 84
DAKOTA File Data FOrmats...........cccocuviiiiiiiiiiciiii e 85
Parameters file format (Standard).............ccccciiiiiiiiiiiiiii 85
Parameters file format (APREPRO)ccccciiiiiiiiiiiee 87
ReSUItS file fOrmMat.........coooviiiiiii e 88
Active set VeCtor CONrol ..o 90
EXAMPIES ... e ————— 90
FaIIUIE CAPIUNING ..t e e e e e e e e e e et et e e et b s s e e e e e e eeaaaeeeeeeennnns 93
Failure detection...........ccccooiiiiiiiii 93
Failure COMMUNICATION ...uuuiiiiiiiie e e as 93
System call application interfaces..........ccceeviviiiiiiiiiiiiicce e 94
Direct application interfacescoooovvviiiiiiieiiiie e 94
FAIIUIE TECOVEIY ... e e 94
ADOI e 94
R BTy e 94
RECOVET ... e 94
CONINUALION.......cei it e e e e e e e ee e 95
The Approximation INEITACE.oooii i 95
Building an approXimationcccooeeeeiiiiiiieieece e 96
Updating an approXimation.............oeeuuuuuuuuniiaaieae e eeeeeeeeeeeeeiieii e e e e e e e e 96
Modifying an apProXiMationceeeeiiieiaeeeeeiaiisiei e 96

DAKOTA Manuals Table of Contents 7

Performing function evaluations..................uuuiiiiiiinii e 97

The RSM ApproxXimation INtEIfACEuuiiiiii i eeeaeeees 97
The MARS Approximation INTErfacCeoovuiiiiiiiiiiiee e 97
The ANN Approximation INtErface ... 98
Exploiting ParalleliSm...........ooo oo 99
Parallelism INtrOdUCTION..........coi e e e e e e e e e e e e e eeeeeennes 99
Enabling Software COMPONENESooiiiiiiiiiieaiee e 100
Direct function synchronization............cccccceeee i 101
SYNCRIONOUS ...ttt 101
ASYNCAIONOUS ...ttt e e e 101
System call SYNChronIizationuuuuiiiiiiiiieie e 101
SYNCAIONOUS......uiiiiiiiiiiiiii e 101
ASYNCAIONOUS ...ttt e e e e e e 102
Master-slave algorithmooooiiiii e 103
Single-level paralleliSm ... 103
Multilevel paralleliSm ..o 103
Pending EXIENSIONScoooiiiiiiiiieiiire s 104
Implementation of ParalleliSm ..o 104
Single-processor DAKOTA implementation................uuuveviiiiiiiiiieeeeeeeeeeeee, 105
Multiprocessor DAKOTA implementationccccuuvvvieiieiiieiiieeneeeeeeeeenns 106
Specifying ParalleliSm ... 107
THE MOUE ...ttt 107
TR HEEIALOT. ... oottt e e e e e e e e e e e eeeeesennenes 107
Single-processor DAKOTA SPeCIfiCationcccvviiieiiiiiiiiiiiiiiiieee, 108
Multiprocessor DAKOTA SPeCIfiCatiONccvviiiiieieeiiiiiiiiiecciiivveeeeee 109
Running a parallel DAKOTA JODovviiiiiiei e e 110
Single-processor DAKOTA eXECULIONuuiiiiiiiiiiiiiee et eeeaans 110
Multiprocessor DAKOTA EXECULIONccouuuuiiiiiiiiiiiieieeeeee e e e e e e e e e e e e e 110
CAVEALS ...ttt e e e e aene 111
Commands INtrOAUCTION.........i i e e e 112
OVBIVIBW ...ttt oottt e e e e e e e e e e e e e et e e et et ittt bbb e e e e e e e eeaaeaeeeeeeensnnnnnnn 112

DAKOTA Manuals Table of Contents 8

IDR INput SPECIfICAtiON Filecoiiiiiiiiieeiei e 112

Common Specification MIStaKesSccoceeeeieiiiiiiiiieece e, 118
Sample daKota.in FIlES......coiii it e e e e e e e e e e e e e eananee 118
Sample 1: OptimIZationcccoeveiiiiiiie e 119
SAMPIE 2: LEAST SQUAIES ...ttt e e 121
Sample 3: Nondeterministic ANAlYSIS.........cciiiiiiieeeiieiieeeeerr e 121
Sample 4: Parameter STUAYcoouuiiiiiiiiiii e 122
Sample 5: Multilevel Hybrid Strategyccccooimiiiiiiiis 122
RUNNING DAK O T A ettt a e e e e e e e e e e e e e e e e e e e satbbnnn s 123
EXecutable LOCAtION. ..ottt 123
Remote iNStallatioNS..........cooviiiiiiii e 123
Sandia developer-supported installationscccccooeeeviiiiiiiienneennnn, 123
CommMANd LiNE INPULES.....eeeiiiiiiiiiiee et 124
EXECULION SYNEAX ...uiiiiii et e e e e e e e e e e eeees 124
INPU/OUtPUt MANAGEMENT.......uueeiiie e e e e e 124
Restart ManagemMeNntoouuiiiiiiiei e 125
Tabular deSCIIPLIONS.......coiiiei i e e e e e e e e s 126
Interface COMMANGAS.........cooiiiiiiiie et 127
D11 Y03 o 1o o PRSPPI 127
I 01T o | 0F= 11 0] o PP PUPORPR 128
SO IABNTITIET ... e e e e e e e e e e e e e 8...... 12
APPLICALION INTEITACE ...t e e e e e e e e 129
APProxXimation INTEITACEccoii i e e e 132
TESEINTEITACE ... e e e e 133
Variables CoOMMANTSoooiiiiiiiei e 134
DTS ol g o] 1 o] o I PP PPTTPPPPP PP 134
SPECITICALION ... e 135
SO IABNTITIEI ..o e e e e e e e e 6...... 13
DESIGN VariabIeSo 136

DAKOTA Manuals Table of Contents 9

UNCErtain VariabIESoooiiiiiiiiiiiie e
State VariabIES ... 139
ReSPONSES COMMANGS.......uiiiiiiiie e e e e e e e e aa e e eaa e aeees
D11 Y03 o 1o o PSPPSR 141
Y01 0F= 11 0] o PSRRI 142
SO IABNTITIET ... e e e e e e e e e e e e 3...... 14
ACHIVE S VECION USAQEciiiiiiiiiiieeiee ittt 143
FUNCHION SPECITICALIONuuiiiiiiiiee e e e e e e e e e 144
Objective and Constraint Functions (Optimization Data Set) 144
Least Squares Terms (Least Squares Data Set)cccccovvvviriieeiiiiiiiieeeennns 145
Response Functions (Generic Data Set)ccceeviiiiiiieiiiiiieeeeeiiiie e 145
Gradient SPECITICALIONcieiiiiie e 146
NO GrAGIENTS ...ttt e e et e e e e e e e eeeeeas 146
NUMENCAl GIradiENTSeviiiiiiiiiieiie e 146
ANAIYEIC GradiENTSccieiiiiii e e 147
MIXEA GrAGIENTS. ...ttt e e e e e e e e e e e 147
HesSian SPECITICALIONueiii i 148
NO HESSIANS ...ttt ettt e e e e e e e e e e e e e e e e s eeeees 148
ANAIYEIC HESSIANS. ..ot 149
Strategy COMMEANGSooiiieieiiiiieee e e e e e a bbb
DTS Tod g o] 1 o] o I PP PTTPPPPPP PP 150
SPECITICALION ...t r e e e e e e e e e e e e e e 151
Single Method COMMANTS.........ooiiiiiiiiiiii e 152
Multilevel Hybrid Optimization COMMANASccuuviiieeiiiiiiiieee e 152
Sequential Approximate Optimization COMMANAScccuvivireeiiiiiiiieeee e 154
Optimization Under Uncertainty Commandseeeeeiiiiiiiiiiieiniieseeiiiviiieee 154
Branch and Bound COmMMANASoooiiiiiiiiiiiiiiiie et 155
Method COMMANTSueiiiiii et e e e e e e e eeeennnnnes

DAKOTA Manuals Table of Contents 10

DTS ol g o] 1 o] o IO PP PPTTPPPPPP PP 156

SPECITICALION ...t r e e et e e e e e e e e e e e e e e e e 157
Method Independent CONLIOIS.uuuuueeiiiiee e e e 158
DOT METINOUS ... e e e e e e e e e e e e e s 161
Method independent CONLIOIS.cccuuiiiiiiiiii e 161
Method dependent CONIOIS.........uuiiiiiie i 162
NS @] I 1Y/ 1 1 o VoL 162
Method independent CONLIOIS.cccoeeiiii e e e 163
Method dependent CONIOIS....... ... 164
OPTHH MEENOAS ...ttt e e e e e e e e e e eeeeeeeene 165
Method independent CONIOIS.cccuuiiiiiiiiii e 165
Method dependent CONIOIS.........uuiiiiiii i 166
Y €10] I\ =1 T To £ 168
Method independent CONLIOIS........cooeeiiiieeiii e 169
Method dependent CONIOIS..........uiiiiiiii e 170
Genetic algorithms (GAS) ...covveii i 170
Coordinate pattern search (CPS)..........ooovviiiiiiiiiiiiie e, 172
SONS-WEBLS ..ottt 174
Stratified MoNte CarlOcoooeeeiiiiiieeeeer e 174
NondeterminiStic MetNOUS...........uuuiiiiiie e 175
Monte Carlo Probability Method.............ccooiiriiiiiiccee e 175
Mean Value Method ... 176
Parameter Study MethOdS........ccooo i e 176
Vector Parameter StUAYuuuuuuiiiiiiee e e eeeeenannes 176
List Parameter STUAYooooiiiiiiiii et 178
Centered Parameter StUAY........ccooeeeeiiiiiiiieeeecee e 178
Multidimensional Parameter Study...........cooooiiiiiiiiiiiiiiiii e 179
INSTAllAtION GUIAEceiiiiiiiiiee e e e e e e 180
Distributions and CheCKOULS ..ottt 180
= 7o] (ol 1 0153 =1 = 1o o 1O 180
ConfIQUration DELAIIS..........uuuuiiiiiiiiiii e 181

DAKOTA Manuals Table of Contents 11

Configuring with specific vendor optimizersoovvvvviiiiiiiiiiiiieee e, 183

Configuring with the Message Passing Interface...........ccccccvvvviiiiiiccceeennn. 184
MBAKEFIE DELAIIS ... 184
AV BALS ..ottt 86....... 1
Intel cross-compilation...............ooveiiiiiiiiii e 186
System MOAIfICALIONS......coiiii s 186
INStAllAtioN EXAMPIES......uiiiiiiiiiiiiiiieiiee e 187
SUN SOolaris PIAtTOIM ... —————- 187
TeXtDOOK EXAMPIE.. ..o e e e neaeaee 192
Textbook Problem FOrmulation..............ooooiiiiiiiiii e 192
IMEBENOTS. ..t 3. 19
RESUIES .. 193......
(@ 0] 1] .017.2= 1 1 o] o KPP SSPRPI 193
LEASE SQUAIES ...ttt e ettt e e e e e e e e e e e e e e e e nnnnnee 201
ROSENDIOCK EXAMPIE ...eni e s 204
Rosenbrock Problem FOrmulationceiiiiiiiiiiiiii e 204
IMEENOAS. ...t e e e e e e 4..... 20
RESUILS .. 205......
Cylinder Head EXamPIe.........uuiiiiiiiiiie e e e 208
Cylinder Head Problem Formulation............ooooiiiiiiiiiii e 208
IMEBENOTS. ..t 9...... 20
OPLtIMIZAtION RESUILS.....eiiiieiiie i e e e e e e e aaaas 209
Engineering APPIICALIONSuueiiiii e 216
Transportation Cask EXample............ouuiiiiiiiiiii e 216
GOMA/EXODUS Application EXample............ioiiiiiiiiiiiiiieieeiiii e 216
Standard text_book example...........coooiiiiiiiiiii 216

Example text_book recast in GOMA format: Filter Introduction 221

DAKOTA Manuals Table of Contents 12

DAKOTA FIlter TULOIIAl ..o e 223

Dryer Design EXamPIe. ... 228

Slot Coater EXamplecoooiiiiiiiiiiii e 235

Y o] 1= 0T [PP 241
AddItioNal REEIENCES.eiiiiiiiiiiie e 242
Table of Contents 13

DAKOTA Manuals

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

List of Figures

Container wall-to-end-Ccap SEal.cooiiiiiiiiii e 20
A graphical representation of the container optimization problem. 22
Fortran listing of the interface for the container example...........cccccovvvviiieennnn. 24
C language listing of the container simulator example............ccccovviiiiiiiiiiiiennnnn. 25
C++ listing of the container optimization examplecccccceeeiiiiiiiiiiiiiciiiiinnnee. 26
DAKOTA input file for the container optimization example.ccccoeeeveeeeee.n. 28
Example DAKOTA OQULPULooiiiiiiiiiiiiiiiee e eeeeetaeean s e e e e e e e e e e e e eeaeeenees 32
DAKOTA input file for the parallel container optimization example.................. 39
UNIX shell script file for parallel DAKOTA. ..o 40
Sample output results for a parallel DAKOTA FUNoooviiiiiiiiiiiiieeee e 41
Generalizations of optimizer constraint handling capabilities..................cccuvveeee. 45
Iterator and Strategy HIerarChi€suvuvviiiiiiiiii e 52
Example centered parameter StUAY.ooooiiiiiiiiiiiiiiii e 67
Example multidimensional parameter StUdY.............ceevvviiiiiieiiiiiieeeee 68
Uncoupled multilevel hybrid optimization strategycceeevviivievviiiiiiiciieeennn. 72
Uncoupled adaptive multilevel hybrid optimization strategy...........cccceeeeeeeeeeeenn. 73
Sequential approximate optimization Strategy..........coovvviviiiiiiiiiiiiiiiiiieeeeeee e 75
The Dakotalnterface class hierarChy............ccccceciiiiiiiiiiiiiii e, 78
The Application Interface CONCEPL.....uuuu i 79
Parameters file data format, standard Optionvvviiiiiiiiiiin 86
Parameters file data format, APREPRO oOption.............cociiiiiiiiiiiiieeeeeieeeeeeeiiis 88
Results file data fOrmMat..........coooo i 89

DAKOTA Manuals List of Figures 14

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.

DAKOTA Manuals

List of Tables

(70 1511 =1 0] £ R PRRRPP 44.........
VariabIES ... 46........
Local VS. global.........ccoooiiii e To...... 4
SMOOth VS. NONSMOOTN.....ciiiiiiiiiii e 48
Algorithmic paralleliSm ... 49
Al INCIUSIVE SUMIMAIYo e et e e e e e e e e e e e e e eeeenaeannans 50
Other method and strategy classificationsuuviiiiiiniiiieeee 51
REQUEST VECTON COUES.... ..ottt e e e e e e e e as 87
Specification detail for set identifier............cccoceeiiiiiiiiii e, 129
Specification detail for application interfaces..............cccceieiiiiiiiiieeiiiiiieeeeeeiiiins 129
Additional specifications for system call application interfaces................c........ 131
Additional specifications for direct application interfacescccccceeeeeeeennnn. 132
Specification detail for approximation interfaces...........ccccvvvvviiiiiiiiiiiiiiineeeeeen. 132
Specification detail for test INterfaces.........cccuvviiiiiiiiiee 133
Specification detail for set identifier..............ccccviiiiiiiiiii 136
Specification detail for continuous design variablesccccovveiiiiiiiiiiceeennn. 137
Specification detail for discrete design variables.............ccccccoiiiiiiiiinnnee, 137
Specification detail for uncertain variables specification...............ccccccceeeeeeeennnn. 138
Specification detail for continuous state variables............cccccoooiiiiiiii . 139
Specification detail for discrete state variables............cccccvvviiviiiiiicciiii e, 140
Specification detail for set identifier..............ccocviiiiiiiiiie e 143
Specification detail for active set vector usage specificationccceeeeeeeeeeee. 144
Specification detail for optimization data SetS.........ccccevvveeeeieeeiiiiieeeeen 145
Specification detail for nonlinear least squares data SetS..............cccceeevvvvviiiinnnns 145
Specification detail for generic response function data sets..............cccevvvvenen. 146
Specification detail for numerical gradientsccccvvviiiiiii s 147
Specification detail for mixed gradientsccccceeeeeeiiiieieeee e 148
Specification detail for single_method strategiescccoovvviiiiiiiiiiiiiciiiieee . 152
Specification detail for uncoupled multi_level strategies..........ccccevvvvvveviinnennn. 153
Specification detail for coupled multi_level strategies............cccvvvvvrvvivviceennnnn. 153
Specification detail for seq_approximate_opt strategiesuvvveciiiiireeeeeeennn. 154

List of Tables 15

Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.

Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.

Specification detail for opt_under_uncertainty strategies..........ccccveveeeirieeeeeennnn. 154
Specification detail for branch_and_bound strategies.............cccccoevvvvviiiinvinnnnnnn. 155
Specification detail for the method independent controls..............ccceeeeiiiveeeinnnee 160
Specification detail for the DOT MethodsSccooeeeeeeiiiiieieeecr e, 162
Specification detail for the NPSOL SQP method..........cccoooeeiiiiiiiiiiiii, 164
Specification detail for the OPT++ conjugate gradient methodcc........ 167

Specification detail for unconstrained and bound-constrained Newton-based OPT++

methods 167

Specification detail for barrier-constrained Newton OPT++ methods............... 167
Specification detail for the OPT++ bound constrained ellipsoid method........... 168
Specification detail for the OPT++ PDS method...............oovviiiiiiiiiiiiie, 168
Specification detail for OPT++ new method testingcceuvvvviiiiiiiiinnieeeeeeee, 168
Specification detail for SGOPT method dependent controls................cccvvvenneee. 170
Specification detail for the SGOPT GA methods...........cooovvviiiiiiiiiiiiieeeeeeeeeee, 171
Specification detail for SGOPT real GA crossover and mutation...................... 171
Specification detail for SGOPT integer GA crossover and mutation................. 172
Specification detail for the SGOPT CPS methods............cccoooviiviiiiiiiiciccceee. 172
Specification detail for the SGOPT Solis-Wets method..............cccooeeeeeiiiininnen. 174
Specification detail for the SGOPT sMC method...........cccoovvvviiiiiiiiiiiiieeeeee, 174
Specification detail for the Monte Carlo probability method............................. 175
Specification detail for the mean value method..............cccoooeiiiiiiiiiiie, 176
final_point specification detail for the vector parameter studyccevvveeeee. 177
step_vector specification detail for the vector parameter study..............cccceenn.... 177
Specification detail for the list parameter studycccccoeeeiiiiiiiiiiiiin 178
Specification detail for the centered parameter study.............ooeeeiiiiiiiiiiiiinene. 179
Specification detail for the multidimensional parameter studyccccee...... 179

DAKOTA Manuals List of Tables 16

DAKOTA Introduction

Motivation

Advanced computational methods have been developed for simulating complex physical systems
in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural
mechanics, shock physics, and many others. In many situations simulators can be used to
generate highly accurate models of real processes. These simulators can be an enormous aid to
engineers who want to develop an understanding and/or predictive capability for the complex
behaviors that are often observed in the respective physical systems. Often, these simulators are
employed as virtual prototypes, where a set of predefined system parameters, such as size or
location dimensions and material properties, are adjusted to improve or optimize the performance
of a particular system, as defined by one or more system performance objectives. Optimization of
the virtual prototype then requires running the simulator, evaluation the performance
objective(s), and adjusting the system parameters in an iterative and directed way, such that an
improved or optimal solution is obtained for the simulation as measured by the performance
objective(s). System performance objectives can be formulated, for example, to minimize weight,
cost, or defects; to limit a critical temperature, stress, or vibration response; or to maximize
performance, reliability, throughput, reconfigurability, agility, or design robustness. One of the
primary motivations for the development of DAKOTA has been to provide engineers with a
systematic and rapid means of obtaining improved or optimal design approximations from their
simulator-based models. Making this capability available to engineers generally leads to better
designs and improved system performance at earlier stages of the design phase, and eliminates
some of the dependence on real prototypes and testing, thereby shortening the design cycle and
reducing overall product development costs.

In addition to improving performance objectives through optimization, computational

simulations can also be used as tools to quantify uncertainty and assess risk in high-consequence
events, to investigate the sensitivity of critical responses to model variations, and to reconcile
model predictions with experimental observations. In each of these studies (as well as many
others), computational simulations are used to provide the necessary informational building
blocks for answering fundamental engineering questions about the predictive accuracy of
computational models and the performance, safety, and reliability of products and processes. By
providing a flexible and extensible framework for the answering of these fundamental questions,
the utility and impact of computational methods can be greatly extended. This is what the
DAKOTA activity strives to achieve.

What is DAKOTA?

The DAKOTA (Design Analysis Kit for OpTimizAtion) provides a flexible, extensible interface
between your simulator and a variety of iterative methods and strategies. While DAKOTA was

User’s Instructions DAKOTA Introduction - Motivation 17

originally conceived as an easy-to-use interface between simulation codes and numerical
optimization codes, recent versions have been expanded to include other types of iterative
analysis. In addition to an abundance of optimization methods and strategies that it supports, the
present version of DAKOTA also implements uncertainty quantification with nondeterministic
propagation methods, parameter estimation with nonlinear least squares solution methods, and
sensitivity analysis with general-purpose parameter study capabilities. Thus, one of the many
advantages that DAKOTA has to offer is that access to a very broad range of iterative capabilities
can be obtained through a single, relatively simple interface between DAKOTA and your
simulator. DAKOTA manages interfacing with the iterative methods and strategies, relieving you
of this often difficult and time consuming development burden.

Each of the numerical iterative methods supported by DAKOTA executes your simulation code at
a series of different design parameter values. DAKOTA, in conjunction with the iterative
methods that it supports, can utilize the this series of point solutions from your simulation code
to answer fundamental engineering questions, such as “what is the best design?”, “how safe is
it?”, or “how much confidence do | have in my answer?”. In addition to providing this
environment for answering systems performance questions, the DAKOTA toolkit also provides
an extensible platform for the development of customized methods and strategies, which can be
used to increase the robustness and efficiency of the iterative analyses for computationally
complex engineering problems (see [Eldred, M.S., 1998]).

The DAKOTA toolkit is a flexible problem-solving environment that offers a systematic way of
obtaining iterative solutions to user generated design problems. Should you want to try a
different type of iterative method or strategy with your simulator, it will only be necessary to
change a relatively few commands in the DAKOTA input and start a new analysis. The flexible
yet systematic approach to DAKOTA command syntax allows you to change between methods
and strategies in an efficient manner, the need to learn a completely different style of command
syntax and the need to reconstruct of the interface each time you want to use a new optimization
or other iterator method is eliminated.

Five architectural components define and control the flow of data through DAKOTA, these are:
strategies methods variables, responsesandinterfaces These five components define

separate areas of flexibility and extensibilgyrategiesnanage the interplay of the other

components and allow you to build sophisticated and adaptive schemes based on method
combination and hybridization, management of approximate models, incorporation of

uncertainty into optimization processes, management of parallelism, etc. Other novel approaches
to the systems analysis process can be added as they are envisioned and used to leverage the
developments within the other architecture compon&fgshodsinclude the major categories
optimization, uncertainty quantification, nonlinear least squares, and parameter study, and are
extensible, both through the inclusion of new algorithms within a category, and through the
addition of new iterator branches that fit the general model of repeated mapping of variables into
responses through simulation codéariablescurrently include design, uncertain, and state

variable specifications for continuous, discrete, and mixed problem dofRasmonsemclude

function values, gradients, and Hessians (an optimization data set), where these functions can be

User’s Instructions DAKOTA Introduction - What is DAKOTA? 18

objective and constraint functions, residual functions (least squares data set), or generic response
functions (uncertainty and parameter study data sets) depending on the iterator in use. Lastly,
interfacesprovide access to simulation codes, test functions, and approximations through a
variety of communication protocols. In the DAKOTA architectsteategiesnanage how
methodgnapvariablesinto responseshrough the use ofterfaces

Tutorial

Getting started

In this section you will be given instructions on how to set up and run a simple DAKOTA
optimization analysis. It is assumed that the DAKOTA install procedure, as outlined in the
Installation Guide on page 18@as been completed successfully, including configuration with

the NPSOL and/or DOT optimization package(s) enabled. Once DAKOTA has been successfully
installed you are ready to proceed with the tutorial. A later tutorial example will show you how

to set up and run a DAKOTA analysis in parallel processing mode. If you intend to run this
example you will need to configure DAKOTA with MPI as described in Configuring with the
Message Passing Interface on page 184.

The getting started tutorial will proceed by having you set up and run a sample numerical
optimization problem in DAKOTA. In this tutorial you will learn how to:
» Construct a simple interface between an evaluation code and DAKOTA

« set up a DAKOTA input file including strategy, interface, variables, responses, and method
specifications

* initiate a DAKOTA run
* interpret a DAKOTA output file

Working through the example should give you a good understanding of the basic operation of
DAKOTA. Additional examples, which will allow you to further your understanding of

DAKOTA, appear in the sections titled Textbook Example on page 192, Rosenbrock Example on
page 204, Cylinder Head Example on page 208, Engineering Applications on page 216, and
Some useful features of DAKOTA on page 35, as well as throughout the text.

A basic optimization problem

As a means of familiarizing new users to the DAKOTA software and as a means of
demonstrating some of the capabilities of DAKOTA, a simple example optimization problem will

be worked. For this example, suppose that a high-volume manufacturer of light weight steel
containers wants to minimize the amount of raw sheet material that must be used to manufacture
a 1.1 quart cylindrical-shaped can, including waste material. Material for the container walls and
end caps is stamped from stock sheet material of constant thickness. The seal between the end

User’s Instructions DAKOTA Introduction - Tutorial 19

caps and container wall is manufactured by a press forming operation on the end caps. The end
caps can then be attached to the container wall forming a seal through a crimping operation.

Figure 1 Container wall-to-end-cap seal.

end cap

wall

For preliminary design purposes, the extra material that would normally go into the container end
cap seals is approximated by increasing the cut dimensions of the end cap diameters by 12% and
the height of the container wall by 5%, and waste associated with stamping the end caps in a
specialized pattern from sheet stock is estimated as 15% of the cap area. The equation for the
area of the container materials including waste is

E end cap E E end cap E O ominal B Ocontainer O [nomina |
A=ox0 waste 0,0 seal [U, 0 wall seal a) U .
=<2Xg) 0% 0 . 0*Uend cap Ut _ 7~ Hcontain
material material O O material 0

O g O U g area g U U gwall ar e

U factor U O factor U U factor U

or
0
A = 2(1.19(1.121 +(1.05TOH ()

whereD andH are the diameter and height of the finished product in units of inches, respectively.
The volume of the finished product is given by
D°H 3

V = = (1.1gt)(57.75n “/qt) 3)
The equation for area is the objective function for this problem; it is to be minimized. The
equation for volume is an equality constraint; it must be satisfied at the conclusion of the
optimization problem. Any combination BfanH that satisfy the volume constraint produce a
feasiblesolution (although not necessarily the optimal solution) to the area minimization
problem, and any combination that do not satisfy the volume constraint genardeasible
solution. Thus, in this optimization problem, the area objective function is to be minimized with
respect to parameteldsandH, subject to satisfaction of the volume constraint. The area that is a

User’s Instructions DAKOTA Introduction - Tutorial 20

minimum subject to the volume constraint is tiptimal area, and the corresponding values for
the parameter® andH are the optimal parameter values. The optimization problem can be stated
in a more compact and standardized form as

2
min J 1'15(1'12)"% + (1.05)TDH

(4)

D°H 3
subject to: T[T— (1.2qt)(57.75n “/qt) =0

It is important that the equations supplied to a numerical optimization code be limited to
generating only physically realizable parameters as optimizers. It is often up to the engineer to
supply these limits, usually in the form of parameter bound constraints. General purpose
numerical optimizers do not typically have the capability to differentiate between physically
meaningful and unmeaningful parameter values. For example, by observing the equations for the
area objective function and the volume constraint, it can be seen that by allowing the di@neter,
to become negative, it is algebraically possible to generate relatively small values for the area
that also satisfy the volume constraint. Negative valueB &ve of course physically

meaningless. Therefore, to ensure that the numerically-solved optimization problem remains
meaningful, a bound constraint >0 must be included in the optimization problem statement.
A positive value foH is implied since the volume constraint could never be satisfi¢d/dre
negative. However, a bound constraintz 0 can be added to the optimization problem if
desired.

A graphical view of the container optimization problem appears in Figure 2. The 3-D surface
defines the ared, as a function of diameter and height. The curved line that extends across the
surface defines the areas that satisfy the volume equality conatr&@naphically, the container
optimization problem can be viewed as one of finding the point along the constraint line with the
smallest 3-D surface height in Figure 2. This point corresponds to the optimal or minimizing
values for diameter and height of the final product.

User’s Instructions DAKOTA Introduction - Tutorial 21

H, in. 0 2

D, in.
Figure 2 A graphical representation of the container optimization problem.

The numerical optimizers that are presently supported by DAKOTA accept only inequality
constraints, in a less-than-or-equal-to format, and not equality constraints such as the volume
constraint in this example. However, it is possible to represent any equality constraint, such as

g(x) = 0, with two inequality constraintgy(x) <0 anraj(x)<0 , since the only time both
inequalities are satisfied iswher{x) = 0 is satisfied. Given the requirements on the constraint
functions and variable bounds, the optimization problem can restated as

User’s Instructions DAKOTA Introduction - Tutorial 22

2

min % 1.15(1.12)n% +(1.05)%DH
. . _D°H 3
subject to: T[T— (2.2qt)(57.75n “/qt)<0 (5)

D°H 3
—nT +(1.1gt)(57.78n “/qt)<0

D=0,H=0

This statement of the optimization problem will be incorporated into a simulator in the following
sections. The termimulator is defined within DAKOTA in a general sense. A simulator is any
computer code that can accept variables as input, and compute and output responses in the form
of function values and possibly gradient and second partial derivative (Hessian) information. In
terms of the DAKOTA iterator for this optimization examp2andH arevariables, and the area
objective function, and the volume constraint functions are contained within the simulator, and
are to be used to generadsponsesBound constraints are handled internally by optimizers and
do not need to be managed via a users interface. The mechanisms for receiving the variables
from DAKOTA into the simulator, computing the responses, and passing the responses from the
simulator back to DAKOTA comprise theterface. What remains to be done before DAKOTA

can be used to solve this optimization problem is the construction of this interface, and selection
of one or morenethodsandstrategiesfrom the DAKOTA library. These tasks will be covered

in the following sections.

Constructing the inteatce

An interface in the DAKOTA environment is a user routine that is responsible for mapping
variables into responses. While a practical implementation of an interface might include calls to a
finite element or finite difference simulation code, a simple example interface will be constructed
in this section that will be used to compute values for the area objective function and the volume
constraint functions from algebraic equations using valuBsapidH as input variables. Code

for reading the input variables and writing the output responses is also part of the interface.

DAKOTA offers more than one option for initiating execution of the interface and for performing
the input of variables and output of responses. For the purpose of an introductory example the
The System Call Application Interface on page 81 approach will be used to initiate execution of
the interface. Another interface possibility is given in the section titled The Direct Function
Application Interface on page 80. For the system call approach, the interface exists as one or
more stand-alone executable programs. One execution of the interface reads one set of variables,
executes the simulator, which performs any necessary calculations, and outputs one set of
responses. For this example the 1-piece Interface on page 81 will be used. For this example the
interface will house the input, computational, and output parts of the interface in a single
executable. The 3-piece Interface on page 81 is an alternative that can be used to obtain a
preprocessor-simulator-postprocessor interface format. Example listings of the interface for the

User’s Instructions DAKOTA Introduction - Tutorial 23

container optimization problem are given in Figure 3 through Figure 5 for Fortran, C, and C++
languages, respectively.

Figure 3 Fortran listing of the interface for the container example.

CrFxxkkk * Fkkkkkkk * *

CRFxxkkkkkdhkkkk *% *% *kkkhkkkhkkkhkkkhrk *% * *kkk

program container

*kkkkkkkhkkkkk *% *% *kkkhkkkhkkkhkkkhrk *% * *kkk

Fkk * Fkkkkkkk * *

Q0

integer num_fns,num_vars,req(1:3)
double precision fval(1:3),D,H
character*80 infile,outfile,instr
character*25 valtag(1:3)

double precision Pl /3.14159265358979/

c getthe input and output file names from the command line
¢ using the fortran 77 library routine getarg

call getarg(1,infile)

call getarg(2,outfile)

*kkkkk * Fkkkkk

read the input data from DAKOTA

* Fkkkkk

open(11,FILE=infile, STATUS="OLD")

c getthe number of variables and function evaluation requests
read(11,*)num_vars,instr,num_fns,instr

c getthe values of the variables and the associated tag names
read(11,*)H,instr
read(11,*)D,instr

c get the evaluation type request for the associated function number
do 10 i=1,num_fns
read(11,*)req(i),instr
10 continue

close(11)

CrFxxkkk * F*kkkkkkk

compute the objective function and constraint values
if(req(1).eq.1) fval(1)=0.644*PI*D**2+1.05*PI*D*H
if(req(2).eq.1) fval(2)=0.25*PI*H*D**2-63.525
if(req(3).eq.1) fval(3)=-0.25*PI*H*D**2+63.525

(9]

write the response output for DAKOTA
valtag(1l)="area’
valtag(2)="volume_constraint_1’
valtag(3)="volume_constraint_2’

open(11,FILE=outfile, STATUS="UNKNOWN?")

(9]

do 20 i=1,num_fns
if(req(i).eq.1) then
write(11,'(E22.15,1X,A)),fval(i),valtag(i)
endif
20 continue

close(11)

end

The one-piece approach assumes that all file I/O pre and post-processing are present in one
callable program or driver routine. File names are supplied on the command line for the

User’s Instructions DAKOTA Introduction - Tutorial 24

interface, e.g. an internal system call by DAKOTA to the one-piece interface looks something
like:
system("container variables.in responses.out");

wherecontainer is the simulator executable for this example, and the variables input and
responses output file names follow on the same line. File names can then be accessed by the
interface using a command line argument procedure (library ragetiaeg in Fortran or the
arrayargv in C or C++). While not strictly needed when file names are not changing, command
line retrieval of the file names is required when unique name assignment (e.g. file tagging) is
used.

Figure 4 C language listing of the container simulator example.

#include <stdio.h>
#include <stdlib.h>

/* container.c - container optimization example */

void main(int argc, char **argv)

{

FILE *fileptr;

double fval[3],D,H;

int i,num_vars,num_fns,req[3];

char *infile,*outfile,in_str[81];

char *valtag[]={"area\n",
"volume_constraint_1\n",
"volume_constraint_2\n"};

const double Pl = 3.14159265358979;

/* assign the input and output file names from the command line */
infile = argv[1];
outfile = argv[2];

[k Fekkkokok |
/* read the input from DAKOTA */
[k Fekdkkokok

fileptr = fopen(infile,"r");

/* get the number of variables and functions*/
fscanf(fileptr,"%d %80s %d %80s",&num_vars,in_str,&num_fns,in_str);

/* get the values of the variables and the associated tag names */
fscanf(fileptr,"%lf %80s",&H,in_str);
fscanf(fileptr,"%lf %80s",&D,in_str);

/* get the evaluation type request */
for(i=0; i<num_fns; i++)
fscanf(fileptr,"%d %80s",&req([i],in_str);

fclose(fileptr);

[k Fekkkokkokokekokokokk ok
/* compute the objective function and constraint values */
[k Fekkkokkokokekokokokek ok

if(req[0]==1)
fval[0]=0.644*PI*D*D+1.04*PI*D*H;

if(req[1]==1)
fval[1]=0.25*PI*H*D*D-63.525;

if(req[2]==1)
fval[2]=-0.25*PI*H*D*D+63.525;

[k Fekkckkokkekkokkekok |
[* write the response output for DAKOTA */
[k Fekkkckkokkekkokokekok

fileptr = fopen(outfile,"w");

User’s Instructions DAKOTA Introduction - Tutorial 25

for(i=0; i<num_fns; i++)
if(req[i]'=0)
fprintf(fileptr,"%23.15e %s" fvalli],valtag[i]);

fclose(fileptr);
}

For the one-piece interface, the i/o routines associated with the simulator must be able to read
and write files in one of the allowable DAKOTA formats. For the purposes of this example the
input file generated by DAKOTA for the simulator will have the following format:

2 variables 3 functions

<double>D

<double> H

1ASV_1

1ASV 2

1ASV_3
The simulator must be able to read this file to compute the objective and constraint function
values. The first line of the file indicates that there are two variables for this optimization
problem:D andH, and three functions: (1) the area objective function and (2) and (3) the volume
constraint functions. Bound constraints do not need to be computed by the simulator. The second
and third lines are used to transmit values of the vari@btexiH from DAKOTA to the
simulator. The<double> descriptors represent real valuePandH that would appear in an
actual simulator input file. The last three lines are encoded requests for the type of computation
that is to be associated with each of the three functions. The valua &fst character position
of the last three lines indicates that a function value is being requested for each of the three
functions. Other numbers can be used to make requests for gradient or Hessian information, or
some combination of the function, gradient, and Hessian information, see the section titled
DAKOTA File Data Formats on page 85 and specifically the subsection Active set vector control
on page 90 for more information. However, for this example, only function values will be
requested by DAKOTA and any gradient information needed by the numerical optimizer will be
computed internally by DAKOTA through finite differencing. The strings beginning with ASV
on the last three lines of the file are the default tag names for each function. Function dumbers
through3 in the on the end positions of the last three lines correspond to the functions labeled
fval(1) throughfval(3) in the Fortran listing for the container simulator, or functions
labeledfval[0] throughfval[2] in the C and C++ listings, respectively. It is also possible
to assign tag names to these requests.

Figure 5 C++ listing of the container optimization example

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>

I Hekkkkk *
/I container.C - C++ container optimization example
I Hekkkk *

int main(int argc, char** argv)

Il
/I read the input from DAKOTA

User’s Instructions DAKOTA Introduction - Tutorial 26

Il
fstream fin(argv[1],ios::in);

/I get the number of variables and functions

int num_vars, num_fns;

char in_str[81];

fin >> num_vars >> in_str >> num_fns >> in_str;

/I get the values of the variables and the associated tag hames
double D,H;

fin >> H >>in_str;

fin >> D >>in_str;

/I get the evaluation type request
int* req = new int [num_fns];
inti;
for(i=0; i<num_fns; i++) {
fin >> req[i];
fin.ignore(256, "\n’);
}

fin.close();

[Rk Hekkkk
/I compute the objective function and constraint values
[Rk Fekkckk
double *fval = new double [num_fns];
const double Pl = 3.14159265358979;
if(req[0]==1)
fval[0]=0.644*PI*D*D+1.04*PI*D*H;
if(req[1]==1)
fval[1]=0.25*PI*H*D*D-63.525;
if(req[2]==1)
fval[2]=-0.25*PI*H*D*D+63.525;

[Rk Hekkkk

/[write the response output for DAKOTA

[PRk Hekkkk

fstream fout(argv[2],ios::out);

fout.precision(15);

fout.setf(ios::scientific);

fout.setf(ios::right);

char *val_tag[]= {"area\n",
"volume_constraint_1\n",
"volume_constraint_2\n"};

for(i=0; i<num_fns; i++)
if(req[i]=1)
fout << setw(23) << fvalfi] << " " << val_tag[i];

fout.close();

return O;

In this exampleaum_fns represents the total number of objective and/or constraint function
evaluations in the model. For the container optimization example there is one area objective
function and two volume inequality constraint functions. Requests for a function evaluation are
stored in variableeq(i); the objective function request is storedenq(l) and the volume
constraint requests are storedeq(2) andreq(3) , respectively, for the Fortran listing. A
value ofl forreq(i) indicates compute the associated function evaluation, while a value of
indicates do not compute. The objective function value is storedlfl) and the volume
constraint values are storedfal(2) andfval(3) , respectively. For this example the
evaluation request (storedneq(i)) will consist strictly of requests or nonrequests for

User’s Instructions DAKOTA Introduction - Tutorial 27

function values. Any gradient or Hessian information needed by the numerical optimizer is
computed internally by DAKOTA through finite differencing and additional calls to the
simulator, thereby relieving you of this burden. However, if the interface has the capability to
compute gradient and/or Hessian information internally, DAKOTA also has the capability to
make requests for this information if it is needed by the numerical optimizer. Such an interface
could contain branching and looping structures to handle specific requests for gradient and
Hessian information. However, the limited complexity of these versions of the interface are
suitable for this simple example.

The simulator-to-DAKOTA response output has the following format for the container
optimization problem:

<double> area
<double> volume_constraint_pos
<double> volume_constraint_neg

This file contains one line for each of the function values that was requested in the simulator
input file. The <double> descriptors represent real values of each associated functamedag (

for example). The function tags are optional. They are in fact ignored by DAKOTA, and the order
of the numeric data is assumed to be in the same as the order of requests in the input file.
Function tags do however increase the readability of the output files. The only requirements for
function tags is that they be separated from the numeric data by a blank space or new line
character, that they contain at least one character (A-Z or a-z), and that they contain no blank
spaces. Output of gradient and Hessian information is also possible. See Results file format on
page 88 for more information.

Creating a BKOTA input file

A DAKOTA input file is a collection of character and numeric information that describes the
problem to be solved. For this example, the file will be nadad&dta_container.in . The

input file contains fields describing what strategy, method, variables, responses, and interface
components of DAKOTA are to be used to solve the problem. The contents of the DAKOTA

input file must not conflict with the problem as defined in the simulator. A DAKOTA input file

for the container optimization problem is given in Figure 6. Any line beginning with a ‘#

character is treated as a comment. Presence of the backslash (\) character is required in the input
file to indicate the continuation of a major specificatiote(face , variables

strategy , method, orresponse) onto the next line of the file. The last line of each

specification is not terminated with a '\' character since it marks the specification’s end.

Figure 6 DAKOTA input file for the container optimization example.

Interface specification
interface, \
application, system \
analysis_driver = 'container’

Variables specification
variables, \
continuous_design = 2 \
cdv_descriptor 'H’' 'D’ \
cdv_initial_point 4.5 4.5 \
cdv_lower_bounds 0.0 0.0

User’s Instructions DAKOTA Introduction - Tutorial 28

Strategy specification
strategy, \
single_method

Method specification
method, \

npsol_sqgp

Responses speification
responses, \

num_objective_functions =1 \
num_nonlinear_constraints = 2 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_step_size = 0.001 \
no_hessians

In the first four lines oflakota_container.in the interface specification is made. The
system call application interface is specified with the command
application, system\

andcontainer , the name of the executable simulator file, is specified as the analysis driver on
the following line.

Next, the strategy and method specifications are made. For this exasmgéeamethod

strategy is specified, which means that only one optimizer will be used to perform the analysis.
The numerical optimizer that will be used for this analysis ifs®l_sgp optimizer. This
optimizer is selected in the method specification. The NPSOL library provides an
implementation of the SQP or sequential quadratic programming method for nonlinearly
constrained local optimization. For this method it is assumed that the objective and constraint
functions have continuous first and second partial derivatives. It is also implied that the problem
possesses a single local optimal value. However, this method can be applied to problems with
more than one local optimum, if the locally optimal value is considered to be of use even though
it may not be the global optimum.

Following specification of the method, the variables specifications are made. For this example,
the number of design variables is equ& @nd this count is set with the command
continuous_design = 2\

wherecontinuous_design variables have been specified since any real value within the
bounds is a possible solution. Next the name tags for the optimization variabledH) are set
with the command

cdv_descriptor 'H’ 'D'\

wherecdv_descriptor stands for continuous design variable descriptor. This is followed by
thecdv_initial_point to be used at the start of the optimization analysis, and then the
values of the variable bounds. Since only lower bounds are specified, the problem is unbounded
above.

After declaring the variables their associated specifications are, the response specification is
made in filedakota_container.in . First, the number of objective functions is set tdor
the area objective function) and the number of nonlinear constraints (the volume constraints in

User’s Instructions DAKOTA Introduction - Tutorial 29

this example) is set . The following four lines in the response specification state that central
finite difference gradients are to be used by the numerical optimizer, and that these gradients are
to be computed by DAKOTA using a step siz&®@f01 . These specifications are necessary

since they control what DAKOTA asks for and expects in the simulator input and response output
files, respectively, and what internal computations are to be performed on the simulator response
output to generate the gradient approximation. The commangessians is specified since

the interface will not return the Hessian information, rathengis®l_sqp numerical

optimizer generates its own internal gradient-based Hessian approximation.

Thenpsol_sqp optimizer was selected because it has the capability to handle nonlinear
objective and constraint functions. Tthet_mmfd , dot_slp , anddot_sqp methods also

possess these capabilities. DAKOTA can be used to easily change between installed numerical
optimizers. For the DOT optimizer methods this can be achieved by simply replacing the method
specificatiompsol_sqp in the DAKOTA input file with one of the three appropriate DOT
methods. See NPSOL Method on page 162 and DOT Methods on page 161 for additional
information.

Running DAKOTA

Once the interface has been constructed, the process of executing DAKOTA for the example
problem is relatively simple. One possible way to execute the example is to place
dakota_container.in and the interface executabb®ntainer , in a directory with a
path to the DAKOTA executable. The directory $DAKOTA/test is one such directory. It is also
possible to create a link to the dakota executable with the UiNIXommand in some other
directory. If the container simulator executable has not been created it will be necessary to do so
with a command such as

f77 -0 container container.f

for Fortran, or
CC -0 container container.c

for C, or
CC -0 container container.C

for C++. The actual compile commands may vary from system to system. What is important is
that an executable, of one of the preceding example simulators, with theoataieer
exists in the working directory for this example. Once the files are located in an appropriate
directory DAKOTA is executed from the UNIX prompt for the container example with the
command:

dakota -i dakota_container.in

DAKOTA should take a few seconds to load and execute. Output should print to the standard
output device. The DAKOTA output can also be redirected to a file using the syntax
dakota -i dakota container.in > dakota.out

wheredakota.out can be replaced by any desired file name. Output will be discussed in the
following section. See Running DAKOTA on page 123 for a more detailed discussion.

User’s Instructions DAKOTA Introduction - Tutorial 30

Interpreting the results

Figure 7 shows a partial listing of the output for the container optimization example. The first
several lines, down to the line that reaBsifining Single Method Strategy... "

reflect information that was specified in the DAKOTA input file or during DAKOTA mstallatlon.
The lines that follow, down to the line that begins wKPSOL exits with INFORM

code =0 ", contain information about the function and gradient evaluations that have been
requested by NPSOL. Several of the function evaluations and gradient-related function
evaluations have been omitted from this listing for brevity.

The values of the optimization variables and the initial objective and constraint function
evaluations are listed following the line that rea8sdin Function Evaluation

1". The values of the optimization variables are labeled with thelxagslH, respectively, the
value of objective function is labeled with the tag_fn, and the values of the volume
constraint are labeled with the taga_conl andnln_con2 , respectively. Note that one of
the constraint function values is initially violated(@) because the initial design parameters
were not feasible. However, the numerical optimizer has the capability to find a design that is
both feasible and optimal for this example.

Between the optimization variables and the function values the content of the system call to the
simulator is displayed ds (container /var/tmp/aaaa0041c /var/tmp/
baaa0041c) ", withcontainer being the name of the simulator dn@r/tmp/

aaaa0041c and/var/tmp/baaa0041c being the path and names belonging to the
DAKOTA-to-simulator input and simulator-to-DAKOTA output files, respectively. Temporary
files have been used in this case and these are deleted as soon as the simulator-to-DAKOTA
output file is read. However, it is also possible to specify that the i/o files are to be saved under
user supplied names with DAKOTA generated tag extensions, see File saving on page 82 and
File tagging on page 82 for more information.

Just preceding the output of the objective and constraint function values is thcline "
setvector={111} ". Theactive set vectoris not to be confused with the active
constraint set that is sometimes defined for numerical optimization algorithms. For this case the
active set vector is used for a DAKOTA-to-simulator request, and indicates the type of request
that has been made to the simulator for the objective and constraint function evaluations. The
first value ofl on this DAKOTA output line indicates that the simulator is to evaluate the
objective function. The remaining valuesloindicate that the simulator is to evaluate the

volume constraint functions. Had a valuedadppeared in any of these positions it would have
been interpreted by the simulator as a do-not-evaluate request for the respective objective or
constraint function. The values contained in this active set vector correspond to the numbers in
the first character position of the last three lines of the DAKOTA-to-simulator input file described
in the section titled Constructing the interface on page 23.

Since finite difference gradient computations have been specified DAKOTA computes their
values, in part by automatically making additional function evaluation requests to the simulator.
Examples of the gradient-related function evaluations have been included in the sample output,

User’s Instructions DAKOTA Introduction - Tutorial 31

beginning with the line that reads*>>> Dakota finite difference evaluation

for x[1] + h: ". A sample of the resulting objective and constraint function values and their
gradients is shown following function evaluatidieginning with the line>>>>> Total

response returned to iterator: ". Here, another type of active set vector is

displayed in the DAKOTA output file. The lin&ttive set vector = {3 3 3 } "

displays a DAKOTA-to-numerical-optimizer active set vector. It indicates the values that
DAKOTA is supplying to the numerical optimizer associated with the objective function and
constraints. The values 8fare composite combinations used to indicate that the results of a
function evaluation], and a DAKOTA gradient computatiod, are being supplied to the

numerical optimizer, for each of the objective and constraint functions. The composite values are
computed by simple additiod{£2=3). Some numerical optimizers also request Hessian
information. For this case a codedois used. Thus, if the numerical optimizer were being

supplied with function value and Hessian information the active set value woide8bé or if
function value, gradient and Hessian information were being supplied the active set value would
bel1l+2+3=7, for the associated objective or constraint function.

The final lines of the DAKOTA output, beginning with the lire<¥<< Single method

iteration completed ", summarize the results of the optimization analysis. The best

values of the optimization parameters, objective function, and constraint equations are output.
Since the analysis is approximate the constraint functions are only satisfied to within some small
tolerance of zero for this example. The DAKOTA results are followed by a summary of the
NPSOL analysis. A more detailed summary of the NPSOL analysis is contained in either file
fort.9 orfileftn09 , as specified in the output.

Figure 7 Example DAKOTA output

MPI initialized with 1 processors.

Writing new restart file dakota.rst

Constructing Single Method Strategy...

no method_pointer: last specifications parsed will be used

methodName = npsol_sgp

gradientType = numerical

hessianType = none

Numerical gradients using 0.1% central differences

to be calculated by the dakota finite difference routine.

Optimality Tolerance =0.0001

NOTE: NPSOL'’s convergence tolerance is not a relative tolerance.
See pp. 21-22 of NPSOL manual for description.

Derivative Level =3

Running MPI executable in serial mode.

Running Single Method Strategy...

Begin Dakota finite difference routine

>>>>> |nitial map for non-finite-differenced portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:
4.,5000000000e+00 H
4.5000000000e+00 D

(container /var/tmp/aaaa0041c /var/tmp/baaa0041c)
Removing /var/tmp/aaaa0041c and /var/tmp/baaa0041c

User’s Instructions DAKOTA Introduction - Tutorial 32

User’s Instructions

Active response data for function evaluation 1:

Active setvector={111}
1.0776762359e+02 obj_fn
8.0444076396e+00 nin_conl
-8.0444076396e+00 nin_con2

>>>>> Dakota finite difference evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:
4,5045000000e+00 H
4.5000000000e+00 D

(container /var/tmp/caaa0041c /var/tmp/daaa0041c)
Removing /var/tmp/caaa0041c and /var/tmp/daaa0041c

Active response data for function evaluation 2:

Active setvector={111}
1.0783442171e+02 obj_fn
8.1159770472e+00 nin_conl
-8.1159770472e+00 nin_con2

>>>>> Dakota finite difference evaluation for x[1] - h:

Begin Function Evaluation 3

Parameters for function evaluation 3:
4,4955000000e+00 H
4.5000000000e+00 D

(container /var/tmp/eaaa0041c /var/tmp/faaa0041c)
Removing /var/tmp/eaaa0041c and /var/tmp/faaa0041c

Active response data for function evaluation 3:

Active setvector={111}
1.0770082548e+02 obj_fn
7.9728382320e+00 nin_conl
-7.9728382320e+00 nin_con2

>>>>> Dakota finite difference evaluation for x[2] + h:

Begin Function Evaluation 4

Parameters for function evaluation 4:
4.5000000000e+00 H
4,5045000000e+00 D

(container /var/tmp/gaaa0041c /var/tmp/haaa0041c)
Removing /var/tmp/gaaa0041c and /var/tmp/haaa0041c

Active response data for function evaluation 4:

Active setvector={111}
1.0791640170e+02 obj_fn
8.1876180243e+00 nin_conl
-8.1876180243e+00 nin_con2

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:
4,5000000000e+00 H
4.4955000000e+00 D

DAKOTA Introduction - Tutorial

33

(container /var/tmp/iaaa0041c /var/tmp/jaaa0041c)
Removing /var/tmp/iaaa0041c and /var/tmp/jaaa0041c

Active response data for function evaluation 5:

Active setvector={111}
1.0761892743e+02 obj_fn
7.9013403937e+00 nin_conl
-7.9013403937e+00 nin_con2

>>>>> Total response returned to iterator:

Active set vector ={3 3 3}
1.0776762359e+02 obj_fn
8.0444076396e+00 nin_conl
-8.0444076396e+00 nin_con2
[1.4844025288e+01 3.3052696308e+01] obj_fn gradient
[1.5904312809e+01 3.1808625618e+01] nin_conl gradient
[-1.5904312809e+01 -3.1808625618e+01] nin_con2 gradient

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 40

Parameters for function evaluation 40:
4.9556729812e+00 H
4,0359108491e+00 D

(container /var/tmp/adaa0041c /var/tmp/bdaa0041c)
Removing /var/tmp/adaa0041c and /var/tmp/bdaa0041c

Active response data for function evaluation 40:
Active setvector={111}
9.8930418512e+01 obj_fn
-1.2698647482e-01 nin_conl
1.2698647482e-01 nin_con2

>>>>> Total response returned to iterator:

Active set vector ={3 3 3}
9.9062468783e+01 obj_fn
1.8074075570e-10 nin_conl
-1.8074075570e-10 nin_con2
[1.3326473792e+01 3.2694282247e+01] obj_fn gradient
[1.2818642490e+01 3.1448402789e+01] nin_conl gradient
[-1.2818642490e+01 -3.1448402789e+01] nin_con2 gradient

NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best design parameters =
4.9556729812e+00 H
4.0399507999e+00 D
<<<<< Best objective function =
9.9062468783e+01
<<<<< Best constraint values =
1.8074075570e-10
-1.8074075570e-10
Run time from MPI_Init to MPI_Finalize is 6.0880220000e+00 seconds

User’s Instructions DAKOTA Introduction - Tutorial

34

NPSOL --- Version 4.06-2 Nov 1992

Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
0 30.0E+00 1 1.07767624E+02 1.1E+01 1.5E+00 1 0.0E+00 F FF
1 11.0E+00 2 9.95643509E+01 4.2E+00 1.3E+00 1 0.0E+00 F FF
2 11.0E+00 3 9.91019314E+01 6.5E-01 3.8E-01 1 0.0E+00 F TF
3 11.0E+00 4 9.90642035E+01 1.3E-01 9.4E-02 1 0.0E+00 F TF
4 11.0E+00 5 9.90624728E+01 5.2E-03 3.6E-03 10.0E+00 T TF
5 11.0E+00 6 9.90624688E+01 6.4E-06 1.8E-04 1 0.0E+00T TF
6 11.0E+00 7 9.90624688E+01 1.9E-08 4.1E-06 1 0.0E+00T TF
7 01.0E+00 8 9.90624688E+01 2.6E-105.2E-12 10.0E+00T TT

Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 99.06247

Some useful features of DAKOTA

DAKOTA has many features that can be used to enhance your problem solving capability,
including ones that can be used to reduce the overall amount of time you could spend running an
analysis. Some of these features are implicit to the DAKOTA input file, since this file allows you
to readily change between analysis types, vendor codes, application problems, etc. Other useful
time-saving features are also present in DAKOTA. In this section examples of the restart
capability and the parallel processing interface will be discussed.

Restarting BKOTA

DAKOTA was developed for solving problems that typically require multiple calls to
computationally expensive simulation codes. In some cases you may want to conduct the same
optimization, but to a finer final convergence tolerance. This would be costly if the entire
optimization analysis had to be repeated. Power outages and system failures could also result in
costly delays. However, DAKOTA automatically records enough of the input and response data
from calls to your simulation code so that a time-inexpensive restart is possible.

As an example of the DAKOTA restart capability, consider the above container example again.
For the sake of this example, pretend that the simulator function evaluations are expensive and
that the DAKOTA run unexpectedly aborted after 20 successful iterations. Assuming that the
original DAKOTA analysis was started with the command

dakota -i dakota_container.in

DAKOTA will automatically generate a file namdedkota.rst ~ that contains input and
response information from the aborted run. To instruct DAKOTA to essentially "pick up where it
left off" execute the command

dakota -i dakota_container.in -r -s 20 -w dakota_new.rst

This command tells DAKOTA to recover the results of the first twenty simulator calls from the
restart file and then proceed with the analysis by making simulator calls as usual, writing the new

User’s Instructions DAKOTA Introduction - Tutorial 35

restart filedakota_new.rst . A more in depth discussion of the restart capability with
additional features is given in Restart Management on page 125.

The parallel intedce

If you have more than one processor available, such as a cluster of network-connected
workstations or a multi-processor, then the solution time required for a DAKOTA analysis can
often be substantially reduced through use of parallel distributed processing techniques. For
many of the optimization and other methods supported by DAKOTA, parallel processing can
dramatically reduce analysis times when the simulator function evaluations are computationally
expensive. The reason behind this is that many of these methods contain at least some
independent calls to the simulator which can be distributed between processors on every iteration
step. If a given method hasindependent simulator calls at every iteration step then the

DAKOTA analysis speed can be increased by as much as a faotbyatinning multiple

instances of the simulator, one on each processor. For maximum speed increase, it has been
assumed that at leastprocessors are available to DAKOTA for simulator evaluations and that

the computation time for an individual simulator call is suitably high (typically on the order of a
few seconds or less for modern workstation clusters) so that interprocessor communication time
is a negligible in comparison. Performance increases can still be obtained for systems with fewer
thann processors.

DAKOTA has been developed with parallel processing capabilities built into its framework.
Thus, if you have a new or existing application that could benefit from making parallel simulator
calls, DAKOTA allows you to exploit parallelism with the addition of only a few commands to

the dakota input file and some minor changes to the command line. DAKOTA can also be used in
conjunction with simulators that have their own parallel capabilities. For a complete description
of the parallel capabilities associated with DAKOTA see Exploiting Parallelism on page 99.

This section will explain where parallelism is exploited in typical optimization algorithms and
show how to set up and run a simple DAKOTA optimization analysis using parallel processing
techniques. It is assumed that DAKOTA has been configured with the MPI package as described
in Configuring with the Message Passing Interface on page 184. Here, the previously defined
container optimization example will be extended to allow parallel processing of the finite
difference gradient computations. For further examples of incorporating parallelism into a
DAKOTA analysis see Specifying Parallelism on page 107.

Gradient based local optimization algorithms typically consist of an initialization phase followed
by an iterative phase, where each iteration consists of: the computation of a search direction in
the multi-dimensional parameter space, a search along the established direction for a sufficient
decrease in the objective function (subject to any constraints that may be present), a gradient
computation, an update to a matrix approximating the second partial derivatives (Hessian) of the
constrained objective, and a convergence check. There are many opportunities to exploit
parallelism in this type of algorithm. However, not all these opportunities would turn out to be
productive in light of the fact that the simulator calls usually dominate the overall computational
effort.

User’s Instructions DAKOTA Introduction - Tutorial 36

The search direction computation is based on the Hessian approximation and the gradient from
the previous iteration or from the initialization phase. The objective and constraint function
values, gradients, and the Hessian approximation are used to compute the search direction. This
direction points to the minimum value of the current estimate of the optimization problem that
satisfies the constraints. This subproblem is only an approximation to the actual nonlinear
optimization problem, and thus, the overall optimization algorithm must proceed iterative

manner to a solution. The search direction computation is based on linear algebra and the
computational effort expended is usually very small in comparison to the simulator calls. This
conclusion also holds true for other parts of the optimization algorithm algebra, such as the
update to the Hessian approximation. The use of parallel processing to solve the optimization
algebra is not typically advantageous unless the number of optimization parameters is huge and
the simulator function evaluations are relatively inexpensive. The development of this type of
parallelism is also strongly tied to the internal data structures of the optimizer. For these reasons,
this form of parallelism is not directly supported by DAKOTA. However, it is possible to link an
optimizer with these capabilities to DAKOTA should the need arise.

The part of the problem where it is advantageous to utilize parallel processing is where multiple
calls to the simulator evaluator can be made in parallel. For gradient-based optimization, this
opportunity occurs during the line search and gradient computation steps. During these steps
both function and gradient information for the constraint and objective functions are computed.
For some types of line search, the gradient is computed directly after the completion of the line
search. For other cases it is an integral part of the line search. For either type of line search, the
gradient information can be computed on additional processors at the same time as the objective
and constraint function values are computed. For the container optimization example if central
finite differences are used in the gradient computations, then an additional four gradient-related
simulator evaluations can be performed on four additional processors. For expensive simulator
evaluations, this would result in a maximum speed increase of a factor of five.

Enabling parallel optimization capabilities in DAKOTA is quite easy. The container optimization
problem will be used as an example. While the container simulator function calls are quite
inexpensive in actuality, it is used here for the sake of example. The general set up for a
simulator with expensive function evaluations would follow along the same lines and the output
obtained would be much the same.

No changes are necessary between the DAKOTA to interface input code for serial and parallel
analyses. Some minor changes may be necessary for the interface to DAKOTA output code for
the parallel analysis. The reason for this is that the current version of DAKOTA operating in
parallel mode polls for the existence of the interface-to-DAKOTA output file and once its
existence is detected a read attempt is made. However, it may be that the interface is not finished
writing this file and therefore the read attempt will fail. This condition can occur, for example,
when there is a large amount of output, when a computationally expensive interface alternates
between calculation and output operations, or when there are write delays due to heavy system
loading. DAKOTA has the capability to recover from up to ten failed read attempts of this type

on any interface-to-DAKOTA input file, but the potential for this condition can often be avoided

User’s Instructions DAKOTA Introduction - Tutorial 37

entirely by making some simple changes to the simulator output procedures. The approach used
here is to write the simulator to DAKOTA output to a uniquely named temporary file, and when
all the output has been written and this file has been closed, move or rename it to the file name
stored inoutfile . Other possibilities exist, and are discussed in System call synchronization

on page 101.

The temporary file name can be generated in a variety of ways. However, care must be taken so
that each simulator that is in operation uses a different name. For the container example, that
would require having five different file names on each iteration. One approach to generating
unique file names would be to add one or more characters to the name soortfitein

However, although such an occurrence would be unlikely, there is no guarantee that this would
produce file names that are not already in use somewhere else. Another approach would be to
obtain a unique file name using scratch files in Fortran or from the C-library furtchipnam in

C or C++.

For the Fortran version tlopen statement the listing in Figure 3 is replaced by

open(11,STATUS="SCRATCH)
inquire(11,NAME=tmpfile)

wheretmpfile is a character variable of the appropriate dimension. Write the output data to
this file and replace th#ose statement inFigure 3 with

close(unit=11,STATUS="KEEP’)

Thetmpfile is moved twutfile with the statements

sysvar ="mv " // tmpfile // " " /[outfile
call system(sysvar)$DAKOTA/test/container_p.f

The code for the parallel version is located inddatainer_p.f in the$DAKOTA/test/
directory. This version is not compatible with silicon graphics platforms, which do not allow
closing a scratch file witBTATUS="KEEP’. For this case an alternative mixed language
version that callsmpnam is located in filegontainer_p2.f andtempnm.c. To
compile the Fortran versiaontainer_p.f you will need to enter something like

f77 -0 container_p container_p.f

or for the mixed language version

cc -Cc tempnm.c
f77 -0 container_p container_p2.f tempnm.o

For the C and C++ versions a temporary file name is obtained with the function call
tmpnam(tmpfile);

The filetmpfile is opened, response data is written, and it is closed according to standard C or
C++ conventions. The file is then moveditdfile using a system function call. The C and
C++ versions are stored in filesntainer_p.c andcontainer_p.C in the$SDAKOTA/

User’s Instructions DAKOTA Introduction - Tutorial 38

test/ directory, respectively. To compile use commands similar to those given for the serial C
and C++ versions.

These files are the same as the serial versions, with exception to the changes discussed. In the
event that the simulator code is not directly accessible, the 3-piece Interface on page 81 can be
used to incorporate the above file renaming strategy. It should be noted for problems that execute
as fast as the container example, it is unlikely that a failure due to the race condition would occur
in actuality. However, in any problem where significant delays can occur between the creation of
the interface-to-DAKOTA response file and its completion, such a strategy is necessary. Also, if
the simulator is compiled for use in a multi-thread environment thesyttem call in the

Fortran version and the C callttmopnam may not be suitable on some platforms unless re-

entrant versions are available. For this case some other method should be used to avoid the race
condition or the 3-piece interface could be used. For other approaches to avoiding the race
condition see the discussion in System call synchronization on page 101.

If the parallel container optimization example is to be run on a cluster of network-connected
workstations in master-slave mode under MPI, then only a few changes are necessary to the

DAKOTA input file dakota_container.in in Figure 6. The name of the analysis driver in
the interface specification must be setaatainer_p , the name of the parallel simulator
executable. The commampadrallel_library mpi must be set in the strategy specification

to request MPI as the parallel communication handlerggatliations asynchronous

must be set in the method specification to enable distributed parallel computation of the
simulator function evaluations. These changes are shown in Figure 8 and are stored in file
dakota_container_p.in

Figure 8 DAKOTA input file for the parallel container optimization
example.
Interface specification
interface, \
application, system \

analysis_driver = 'container_p’

Variables specification
variables, \
continuous_design = 2 \
cdv_descriptor 'H’ 'D’ \
cdv_initial_point 4.5 4.5 \
cdv_lower_bounds 0.0 0.0

Strategy specification
strategy, \
single_method \
parallel_library mpi

Method specification
method, \
npsol_sgp \
evaluations asynchronous

Responses speification
responses, \
num_objective_functions = 1 \
num_nonlinear_constraints = 2 \
numerical_gradients \
method_source dakota \
interval_type central \

User’s Instructions DAKOTA Introduction - Tutorial 39

fd_step_size = 0.001 \
no_hessians

Another possibility for the avoidance of the file read race condition makes use of DAKOTA file
File tagging on page 82 and UNIX shell scripting. For this approach, tagged file names are used
in to eliminate write conflicts when multiple instances of the interface are running in parallel, and
in the naming of temporary working directories. Shell scripts are used to actually create
temporary working directories for individual instances of the interface, which eliminates the read
race condition. File tagging is enabled by adding the commands

parameters_file= ‘container.in’\
results_file= ‘container.out’\
file_tag\

under thanterface specification in Figure 8, and the analysis driver specification becomes
analysis_driver = 'container.script’\

One of the serial container executables listed in Figure 3 through Figure 5 is used with the shell
scripting approach. The shell script file listing is given in Figure 9.

Figure 9 UNIX shell script file for parallel DAKOTA.

#! [bin/csh -f
$argv[1] is container.in.(fn_eval_num) FROM Dakota
$argv[2] is container.out.(fn_eval_num) returned to Dakota

create a unique temporary directory using $argv[1]
set num = ‘echo $argv[1] | cut -c¢ 14-
mkdir workdir.$num

#make workdir.$argv[1] the current working directory
cp $argv[1] workdir.$num
cd workdir.$num

#run the container optimization interface from workdir.$argv[1]
..Icontainer $argv[1] $argv[2]

#move the completed output file to the dakota working directory

mv $argv[2] ../.

#remove the temporary working directory

?r% ~rf workdir.$num
The shell script is store in fileontainer.script the DAKOTA input file for stored in file
dakota_container_pss.in in the$DAKOTA/test directory. Other parallel interface

possibilities exist within DAKOTA, see Implementation of Parallelism on page 104.

To execute DAKOTA in parallel mode it must be run within the proper environment. To run on a
workstation cluster under MPI, for example, you might enter the command
mpirun -np 5 dakota -i dakota_container.in > dakota_out

The exact command would depend on how MPI is installed on your system. For a more detailed
discussion see Running a parallel DAKOTA job on page 110. The output results for the Fortran
version ofcontainer_p are shown in Figure 10. The parallel results are much the same as the
serial results. The output file contains several lines indicating that DAKOTA is being run in a
master-slave parallel mode and that the simulator function evaluations are being distributed over
the slave servers. For this example a total of six processors are used. One processor acting as the
master runs DAKOTA, and the remaining processors act as slave servers by conducting simulator

User’s Instructions DAKOTA Introduction - Tutorial 40

evaluations when a request is made. If the number of processors is limited it is also possible
instruct MPI to use one of the processors as both a master and slave. Since DAKOTA is not in
itself computationally expensive the processor can be shared between DAKOTA and the
simulator function evaluation without much performance loss.

Figure 10 Sample output results for a parallel DAKOTA run

MPI initialized with 6 processors.

Writing new restart file dakota.rst

Constructing Single Method Strategy...

no method_pointer: last specifications parsed will be used

methodName = npsol_sqp

gradientType = numerical

hessianType = none

Numerical gradients using 0.1% central differences

to be calculated by the dakota finite difference routine.

Optimality Tolerance =0.0001

NOTE: NPSOL'’s convergence tolerance is not a relative tolerance.
See pp. 21-22 of NPSOL manual for description.

Derivative Level =3

Running MPI executable in parallel master-slave mode.

numsSlaveServers = 5 procsPerAnalysis = 1 procRemainder = 0 parallelismLevel = 1

Running Single Method Strategy...

Begin Dakota finite difference routine

>>>>> |nitial map for non-finite-differenced portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:
4.5000000000e+00 H
4,5000000000e+00 D

(Parallel job 1 added to message passing queue)

>>>>> Dakota finite difference evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:
4.5045000000e+00 H
4,5000000000e+00 D

(Parallel job 2 added to message passing queue)

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:
4.5000000000e+00 H
4.4955000000e+00 D

(Parallel job 5 added to message passing queue)

Synchronizing 5 asynchronous evaluations.
First pass: num_sends =5

User’s Instructions DAKOTA Introduction - Tutorial 41

Master assigning fn. evaluation 1 to server 1
Master assigning fn. evaluation 2 to server 2
Master assigning fn. evaluation 3 to server 3
Master assigning fn. evaluation 4 to server 4
Master assigning fn. evaluation 5 to server 5
Waiting on all jobs.

Active response data for function evaluation 1:

Active setvector={111}
1.0776762359e+02 obj_fn
8.0444076396e+00 nin_conl
-8.0444076396e+00 nin_con2

Active response data for function evaluation 2:

Active setvector={111}
1.0783442171e+02 obj_fn
8.1159770472e+00 nin_conl
-8.1159770472e+00 nin_con2

Begin Function Evaluation 40

Parameters for function evaluation 40:
4.9556729812e+00 H
4,0359108491e+00 D

(Parallel job 40 added to message passing queue)

Synchronizing 5 asynchronous evaluations.
First pass: num_sends =5

Master assigning fn. evaluation 36 to server 1
Master assigning fn. evaluation 37 to server 2
Master assigning fn. evaluation 38 to server 3
Master assigning fn. evaluation 39 to server 4
Master assigning fn. evaluation 40 to server 5
Waiting on all jobs.

Active response data for function evaluation 36:
Active setvector={111}
9.9062468783e+01 obj_fn
1.8074075570e-10 nin_conl
-1.8074075570e-10 nin_con2

Gradient-based optimization is only one type of DAKOTA analysis that lends well to parallelism.
Many of the other methods supported by DAKOTA also can be run in a parallel environment due
to the independence of multiple function evaluations inherent in their design. The Monte Carlo,
coordinated pattern search, and genetic algorithms of SGOPT are further examples where
substantial speed increases can be obtained in a parallel environment for computationally
expensive simulator evaluations, due to the existence of independent function evaluation calls in
each algorithm. A complete list of DAKOTA methods for which parallel analysis can be used is
given in Specifying Parallelism on page 107.

User’s Instructions DAKOTA Introduction - Tutorial 42

Decision Tables for DAKOTA Methods and Strategies

DAKOTA provides easy access to a large number of methods and strategies of varying
capabilities. These individual methods and strategies can be looked at as modular components,
any one of which may be applied in an overall analysis. As a combined resource, these modules
can be used to solve a wide range of individual problem types. Knowing when and where to use
particular methods and/or strategies will enhance the power and performance of DAKOTA, and
give you a greater level of insight into your analysis. This section will be primarily concerned
with the classification of optimization methods and strategies that are part of DAKOTA since
they are many and varied. Nondeterministic methods and parameter studies will also be
discussed.

Optimization algorithms can be categorized by several different means of classification,

according to the uses for which they were designed. Whether the optimizer is for continuous,
discrete, or mixed parameters; is unconstrained or constrained; has a single optimal solution or
multiple possibilities; or has smooth or nonsmooth objective and constraint functions are some
examples. As a first pass, several general types of classifications will be given and the associated
methods will be categorized in tabular form.

The types of constraints that an optimization algorithm is designed to handle is one means of
classification. Optimization algortihms are typically designed for use on problems without
constraints (unconstrained optimizers), or designed so that they can handle upper and lower
bound constraints on the optimization parameters, linear constraint functions, or nonlinear
constraint functions. Categorization of the DAKOTA methods under the constraint classification
is given in Table 1.

User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 43

Table 1 Constraints

Constraints

Applicable Methods

unconstrained

optpp_cg, optpp_fd_newton,
optpp_g_newton,
optpp_newton,
optpp_q_newton, most sgopt
methods

bound constrained

dot_bfgs, dot_frcg,

optpp_baq_newton,
optpp_bc_elipsoid,
optpp_bc_newton,
optpp_bcg_newton,
optpp_bcg_newton,
sgopt_pga_real,
sgopt_coord_ps

linearly constrained

special handling with
npsol_sqp; otherwise any
nonlinearly constrained metho

=z

nonlinearly
constrained

npsol_sqp, dot_mmfd, dot_slp!

dot_sqgp

Constrained optimization algorithms are often designed as generalizations of unconstrained
methods. This concept also holds between the different types of constrained optimizers, i.e.
nonlinearly constrained is often a generalization of linearly constrained, which is a generalization
of bound constrained. Thus, little or no performance loss would be observed for similar methods
when a constrained version is applied to an unconstrained problem, etc. This concept is reflected

User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 44

in Figure 11 where each generalization of the constraint type encompasses previous constraint
types. This type of performance is particularly true of the gradient-based optimizers.

Figure 11 Generalizations of optimizer constraint handling capabilities.

Nonlinearly constrained problems:
constrained DOT, NPSOL

Bound constrained problems:

selected DOT and OPT++ methods

Unconstrained problems:

selected
OPT++,
SGOPT methods

The type of variable that an optimization code can operate on is another method of classification.
Optimization codes designed to handle continuous or real-valued variables are the most prevalent
in DAKOTA. Optimization codes that accept integer or a mix of real and integer variables are
also accessible from DAKOTA, as well as codes that accept continuous nondeterministic
variables. Table 2 categorizes the DAKOTA methods under the variables classification.

User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 45

Table 2 Variables

Variables Applicable Methods

continuous DOT, NPSOL, and OPT++
methods, sao, sgopt_coord_ps
sgopt_coord_sps,
sgopt_solis_wets,
sgopt_pga_real, sgopt_strat_mic

discrete sgopt_pga_int

mixed sgopt_pga_mixed,
branch_and_bound

Optimization problems involving minimization of strictly convex (i.e. bowl shaped) objective
functions that are either unconstrained or have linear constraints have at most a single local
optimal solution. However, minimization problems involving nonlinear constraints and/or
nonconvex objective functions may have multiple local optimal solutions. Similar conclusions
can be drawn for maximization problems. Algorithms that are designed to solve local
optimization problems are typically much more efficient in terms of analysis time than ones that
apply to global optimization problems, because they usually require vastly fewer function
evaluations. However, it is often unknown whether the problem is global or local a priori. Thus, it
is often necessary to apply a less efficient global optimization algorithm. The available DAKOTA
methods are categorized as global or local in Table 3.

A procedure for determining whether a problem is best suited for global or local optimization
can be somewhat of an art form. If the objective and constraint functions are not known
analytically, then it is unlikely that it will be possible to make a judgement without further
information. In some cases it may be desirable to combine global and local optimizers in a
hybrid strategy in order to exploit the respective advantages of each, or to make some
preliminary assessment of the objective and constraint function behaviors over the parameter
space. DAKOTA provides methods and strategies for performing these types of analyses. See
Multilevel Hybrid Optimization on page 71 and Parameter Study Capabilities on page 62 for
more details.

User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 46

Table 3 Local vs. global

Solution Type Applicable Methods

local DOT, NPSOL, and OPT++
methods (except optpp_pds),
sao, sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets

global optpp_pds, sgopt_pga_real,
sgopt_pga_int, sgopt_strat_m¢

Optimization algorithms that have been designed to operate on smooth functions can sometimes
suffer severe performance losses if the problems that they are applied to are actually nonsmooth.
Table 4 categorizes DAKOTA methods as being suitable for either smooth or nonsmooth
analysis. The term smooth is often used to describe functions that have theoretically continuous
gradient and Hessian information. It can be noted that by this definition, numerical analysis is
nonsmooth whenever finite precision arithmetic is used. However, in practice all the methods
employed by DAKOTA can tolerate at least some degree of nonsmoothness. What differentiates
between the categories of smooth and nonsmooth here is whether or not they are immune to
relatively high levels of nonsmoothness.

Gradient based methods cannot tolerate high levels of nonsmoothness, and thus they comprise
the smooth optimization category. Limiting their use to relatively smooth functions is especially
important when finite differencing is used to compute the gradients. However, if the
nonsmoothness is small in comparison to changes that can be observed in the objective function
over some parameter range, then they may be suitable for use. For this case methods intended for
smooth optimization could provide a relatively fast means of obtaining large improvements in the
objective function value. However, convergence to an optimal point can not be guaranteed, and if
finite differencing were employed a relatively large step size would be needed.

Determining when a smooth method is acceptable for use on a given optimization problem, is
again, somewhat of an art form. It may be necessary to gain insight into the level of
nonsmoothness present through use of DAKOTA's Parameter Study Capabilities on page 62. As a
rule of thumb, the finite difference step size should be set so that level nonsmoothness in the
neighborhood initial point is no more than ~10% of the net change in the objective function in
the same neighborhood. It should also be apparent that the net observed change in the objective
function is a large scale change, rather than some form of local waviness. Similar considerations
should be made for the constraint functions. A close observation of the optimization results
usually reveals that much more work is being performed in the line search part of the
optimization algorithm for nonsmooth problems. However, the total work performed is usually
much less for than would be observed for a nonsmooth optimization code. This analysis could be
followed up by one or more of the nonsmooth optimization methods if further improvement in

the objective function is needed.

User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 47

Table 4 Smooth vs. nonsmooth

Function .
Applicable Meth
Surface pplicable Methods
smooth gradient-based: DOT, NPSOL
OPT++ methods (except
optpp_pds)
nonsmooth optpp_pds, sao,

sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets,
sgopt_pga_int, sgopt_pga_red
sgopt_strat_mc

If you have access to a cluster of network-connected workstations or a multiprocessor machine,
then you can exploit parallelism in the execution of your optimization problem to reduce the
overall analysis time. Given that the function evaluations are expensive, algorithmic coarse-
grained parallelism can be exploited in cases where multiple independent function evaluations
are made by the optimization code. All the methods supported by DAKOTA support at least
some algorithmic coarse grained parallelism in one or more specific operating modes. Table 5
categorizes the algorithms. The gradient-based optimizers support speculative analysis in some
modes. For this method DAKOTA speculates that gradient information will be requested by the
optimization algorithm soon after a function evaluation request is made. By computing gradient
information in parallel, at the same time as the function evaluation, a reduction in the overall
analysis time is achieved. However, the gradient information may not be used by the
optimization program on every iteration. A more general form of parallelism is supported by
some of the gradient-based and all the other types of optimization programs. For these codes,
multiple independent function evaluations are always requested on every iteration, and thus the
speculative nature is not present.

User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 48

Table 5 Algorithmic parallelism

Parallelism

Applicable Methods

Serial

standard DOT, NPSOL, and
OPT++ methods using analytig
and vendor numerical gradient

Parallel

DOT, NPSOL, and OPT++
methods using DAKOTA
numerical gradients, optpp_pd
SGOPT methods

Other classifications are also important. For instance, when function evaluations become

vl

extremely expensive, methods that typically require tens of thousands of function evaluations

such as genetic algorithms or Monte Carlo analysis must be ruled out unless a large parallel
machine is available. The number of optimization parameters can also be a factor. For

nongradient-based methods, the probability of finding an improved objective function value on
the next iteration step falls off quickly as the problem dimension increases. This is true even if
the number of processors is scaled with the problem dimension.

Table 6 summarizes the previous classifications. Blank entries in a given column inherit the

category from the previous row.

User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies

49

Table 6

All inclusive summary

=

mc

Variable Function Solution : .
Constraints Applicable Methods
Type Surface Type
continuous smooth local unconstrained optpp_cg, optpp_fd_newto
optpp_g_newton,
optpp_newton, optpp_g_newtdn
bound constrained dot_bfgs, dot_frcg,
optpp_baq_newton,
optpp_bc_elipsoid,
optpp_bc_newton,
optpp_bcg_newton,
optpp_bcg_newton
nonlinearly npsol_sqp, dot_mmfd, dot_slp!
constrained dot_sqgp
nonsmooth local bound constrained sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets
dependent on sao
underlying
optimizer
global bound constrained sgopt_pga_real, sgopt_stral
nonlinearly (coming soon: sgopt_pga_reah
constrained
discrete n/a global bound constraineg sgopt_pga_int
mixed smooth local nonlinearly branch_and_bound
constrained
nonsmooth global bound constrained sgopt_pga_mixed, (coming
soon: sgopt_pga_mixed)

DAKOTA supports interfacing with a number of methods that are not directly used for
optimization, and several strategies that incorporate optimization methods. Some of these have
already been mentioned. These additional capabilities are divided into nondeterministic analysis,
parameter study, and optimization strategy categories in Table 7.

User’s Instructions

DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies

50

Table 7 Other method and strategy classifications

General .
e Applicable Methods
classification
nondeterministic nond_probability, nond_mean_value
parameter study centered_parameter_study,
list_parameter_study,
multidim_parameter_study,
vector_parameter_study
strategies branch_and_bound, multi_level, ouu
sao

User’s Instructions DAKOTA Introduction - Decision Tables for DAKOTA Methods and Strategies 51

Capability Introduction

Iterator and Strategy Hierarchies

Iterator
s
e
[Parameter Study [Optimizer] [Nondeterministic] [Least Squares

— —~

[MeanValug| MCarIo|]<— ’ GNewtorn)

Strategy|

[Multilevel][Branch&Boun{(NonDOpi[SeqgApprox

MultiD

[List|[Centerefl

Interface

[DOT] [NPSOL [OPT++ ISGOPT:|5 Approx.

Figure 12 Iterator and Strategy Hierarchies

The DAKOTA system is designed to accommodate optimization, nondeterministic simulation,
nonlinear least squares, and parameter study methods in its “iterator” hierarchy. These
capabilities often complement each other in a project: (1) a parameter study is used to investigate
local design space issues in order to help select the appropriate optimizer and optimizer controls,
(2) optimization is used to find a best design, and (3) nondeterministic simulation is used to
assess the affects of parameter uncertainty on the performance of the optimal design. Other
classes of iterator methods may be added as they are envisioned, which “leverages” the utility of
the interface developments. For example, software effort in coordinating multiple instances of
parallel simulations on a massively parallel computer (see Multilevel parallelism on page 103) is
reusable among all of the iterators in the DAKOTA system. The inheritance hierarchy of these
iterators is shown in Figure 12. Inheritance enables direct hierarchical classification of iterators
and exploits their commonality by limiting the individual coding which must be done to only
those features which make each iterator unique.

The iterator hierarchy is currently divided into four branches: the optimizer branch contains
optimization algorithms from the DOT, NPSOL, OPT++, and SGOPT libraries, the
nondeterministic branch implements Mean Value and Monte Carlo sampling (MCarlo) methods,
the least squares branch incorporates a Gauss-Newton method (GNewton) from the OPT++
library, and the parameter study branch implements vector, list, centered, and multidimensional
parameter study methods. Refer to the overviews describing Optimization Capabilities on page
54, Uncertainty Assessment Capabilities on page 58, Nonlinear Least Squares Capabilities on

User’s Instructions Capability Introduction - Iterator and Strategy Hierarchies 52

page 60, and Parameter Study Capabilities on page 62 for more information on these iterator
branches, and refer to Method Commands on page 156 for information on iterator specification.

The strategy class hierarchy implements a variety of advanced approaches in which multiple
iterators from the iterator hierarchy can be instantiated and bound to multiple models. These
strategies coordinate multiple levels of iteration, monitor performance, and adapt iterators and
models (switch/refine control) based on observed performance. In addition, strategies manage the
distribution of tasks between the master and slave processors in implementing parallelism (see
Exploiting Parallelism on page 99). The multilevel hybrid strategy uses multiple optimizers in
succession with the best point from one iterator being used as the starting point for a subsequent
iterator. The single method strategy (not shown) invokes a single iterator using a single model
and can be viewed as a strategy layer bypass. The branch and bound strategy is under
development for solution of mixed continuous/discrete applications. The optimization under
uncertainty strategy incorporates an uncertainty quantification within the optimization process.
And, in the sequential approximate optimization strategy, an optimizer is interfaced with an
approximate design space representation from the hierarchy described in The Approximation
Interface on page 95. Refer to the overview of Strategy Capabilities on page 70 for more
information on strategy concepts and procedures, and refer to Strategy Commands on page 150
for information on strategy specification.

User’s Instructions Capability Introduction - Iterator and Strategy Hierarchies 53

Optimization Capabilities

Introduction

Optimization methods in the DAKOTA system involve the manipulation of objective and
constraint functions and potentially their gradient vectors and Hessian matrices. Currently, the
number of objective functions must fie since multi-objective optimization formulations are not
yet explicitly supported. Thus tmefunctions in the DAKOTA response data set are interpreted
asl objective function andh-1 constraint functions within the DAKOTA optimizer hierarchy.

Some optimizers (e.g., NPSOL) have the ability to distinguish constraints which are linear with
respect to the design variables from those which are nonlinear. In the linear case, a single matrix
containing the coefficients of the linear constraint terms is sufficient to define the values of these
constraints for all parameter sets. By providing this matrix to an optimizer which supports
special handling of linear constraints, it becomes unnecessary for the user to evaluate these
constraints on every function evaluation since the optimizer will evaluate them internally (see
[Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986]). However, since most
engineering applications involve nonlinear contraints which are implicit functions of the design
variables, a mechanism for specification of this linear constraint matrix has not yet been
developed within DAKOTA. That is, special handling of linear constraints is not yet supported
and linear constraints should be treated as general nonlinear constraints (evaluated on every
function evaluation).

In DAKOTA, all nonlinear constraints are inequality constraints of the fojfX)o< 0. Therefore,

constraints of the form c(>9 0 must be converted to the form -c&Y. Furthermore, each
equality constraint h(X¥ 0 must be implemented by two oppositely signed inequality
constraints: h(Xx 0 and -h(X)x 0.

When gradient and/or Hessian information is used in the optimization, it is assumed that
derivative components will be computed only with respect tedhéinuous design variables

The omission of discrete variables from gradient vectors and Hessian matrices is common among
all iterators (since derivatives with respect to discrete variables do not exist); however, inclusion
of only the continuous design variables differs from parameter study iterators (which assume
derivatives with respect to all continuous variables) and from nondeterministic analysis iterators
(which assume derivatives with respect to the uncertain variables).

DOT Library

The DOT library [Vanderplaats Research and Development, 1995] contains nonlinear

programming optimizers, specifically the Broyden-Fletcher-Goldfarb-Shanno (DAKOTA's
dot_bfgs method) and Fletcher-Reeves conjugate gradient (DAKGIgtsfrcg method)
methods for unconstrained optimization, and the modified method of feasible directions

User’s Instructions Optimization Capabilities - Introduction 54

(DAKOTAs dot_mmfd method), sequential linear programming (DAKOTést_slp
method), and sequential quadratic programming (DAKO@ASL sqp method) methods for
constrained optimization.

All DOT methods are local gradient-based optimizers which are best suited for efficient
navigation to a local minimum in the vicinity of the initial point. Global optima in honconvex
design spaces may be missed. Other gradient based optimizers for constrained optimization
include the NPSOL Library on page 55.

DAKOTA controls the maximum number of iterations and function evaluations, the convergence
tolerance, the output verbosity, and the optimization type for the DOT methods from its input
specification. See DOT Methods on page 161 for additional details on DOT method
specifications.

NPSOL Library

The NPSOL library [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986] contains a
sequential quadratic programming (SQP) implementation (DAKOTgg®l_sqp method).
SQP is a nonlinear programming optimizer for constrained minimization.

NPSOL’s local gradient-based optimizer is best suited for efficient navigation to a local minimum
in the vicinity of the initial point. Global optima in nonconvex design spaces may be missed.
Other gradient based optimizers for constrained optimization include the DOT Library on page
54.

DAKOTA controls the maximum number of iterations and function evaluations, the convergence
tolerance, the output verbosity, the verification level, the function precision, and the line search
tolerance for NPSOL from its input specification. See NPSOL Method on page 162 for
additional details on NPSOL specifications.

The NPSOL library generates diagnostics in addition to those appearing in the DAKOTA output
stream. These diagnostics are written to the default FORTRAN device 9 filéof.g., on
the Sun Solaris architecture) in the working directory.

OPT++ Library

The OPT++ library [Meza, J.C., 1994] contains primarily nonlinear programming optimizers for
unconstrained minimization: Polak-Ribiere conjugate gradient (DAKOGpipp _cg method),
guasi-Newton, barrier function quasi-Newton, and bound constrained quasi-Newton (DAKOTA's
optpp_g_newton ,optpp_baq_newton , andoptpp_bcg_newton methods), Gauss-
Newton and bound constrained Gauss-Newton (DAKO®p®p g newton and
optpp_bcg_newton methods - part of DAKOTA's nonlinear least squares branch), full
Newton, barrier function full Newton, and bound constrained full Newton (DAKOTA's

User’s Instructions Optimization Capabilities - NPSOL Library 55

optpp_newton , optpp_ba_newton , andoptpp_bc_newton methods), finite difference
Newton (DAKOTAsoptpp_fd_newton method), and bound constrained ellipsoid
(DAKOTA's optpp_bc_ellipsoid method). The library also contains the PDS nongradient-
based method (parallel direct search [Dennis, J.E., and Torczon, V.J., 1994], specified as
DAKOTAs optpp_pds method), and an input place holder for new algorithm testing
(DAKOTA's optpp_test new method).

OPT++’s gradient-based optimizers are best suited for efficient navigation to a local

unconstrained minimum in the vicinity of the initial point. Global optima in nonconvex design
spaces may be missed. OPT++'s PDS method does not use gradients and has some limited global
identification abilities; it is best suited for problems for which gradient information is unavailable

or is of questionable accuracy due to numerical noise. Some OPT++ methods support bound
constraints, but none currently support general linear and nonlinear constraints. For gradient-
based optimization with constraints, the DOT Library on page 54 and the NPSOL Library on

page 55 should be used. For OPT++'s least squares methods, refer to Gauss-Newton on page 61.

DAKOTA manages the following inputs for OPT++ methods from its input specification: the
maximum number of iterations and function evaluations, the convergence tolerance, the output
verbosity, the search method, the maximum step, the gradient tolerance, the initial radius for
ellipsoid methods, and the search scheme size for PDS. See OPT++ Methods on page 165 for
additional details on these specifications.

The OPT++ library generates diagnostics in addition to those appearing in the DAKOTA output
stream. These diagnostics are written to theJfi8_DEFAULT.out in the working directory.

SGOPT Library

The SGOPT (Stochastic Global OPTimization) library [Hart, W.E., 1997] contains a variety of
global optimization algorithms, with an emphasis on stochastic methods. SGOPT currently
includes the following global optimization methods: real-valued and integer-valued genetic
algorithms g¢gopt_pga_real ,sgopt_pga int) and stratified Monte Carlo

(sgopt_strat mc). Evolutionary pattern search algorithms, simulated annealing, tabu search,
and multistart local search (see The Coupled Approach on page 73) are global methods which
are under development but are not available in DAKOTA V1.0. Additionally, SGOPT includes
several local search algorithms such as Solis-VEgtspt_solis_wets) and coordinate

pattern searchs@opt_coord _ps , sgopt_coord_sps).

For expensive optimization problems, SGOPT's global optimizers are best suited for identifying
promising regions in the global design space. In multimodal design spaces, the combination of
global identification (from SGOPT) with efficient local convergence (from DOT, NPSOL, or
OPT++) can be highly effective. None of the SGOPT methods are gradient-based, which makes
them appropriate for discrete and mixed variable problems as well as problems for which
gradient information is unavailable or is of questionable accuracy due to numerical noise. No
SGOPT methods currently support general linear and nonlinear constraints directly, although

User’s Instructions Optimization Capabilities - SGOPT Library 56

penalty function formulations for nonlinear constraints have been employed with success
[Ponslet, E.R., and Eldred, M.S., 1996].

DAKOTA manages the following inputs from its input specification for all of SGOPT’s methods:
maximum number of iterations, maximum number of function evaluations, convergence
tolerance, output verbosity, evaluation synchronization, maximum number of CPU seconds, and
solution accuracy. In addition, each method has a variety of settings which are specific to it
alone. Refer to SGOPT Methods on page 168 for additional details on all of the SGOPT
specifications.

User’s Instructions Optimization Capabilities - SGOPT Library 57

Uncertainty Assessment Capabilities

Introduction

Uncertainty assessment methods (also referred to as nondeterministic analysis methods) in the
DAKOTA system involve the computation of probability distributions for response functions
based on sets of simulations taken from the specified probability distributions for uncertain
parameters. Thus tmefunctions in the DAKOTA response data set are interpretetgaseral
response functions (with no distinction between functions as with objective and constraint
functions in the optimizer branch) within the DAKOTA uncertainty assessment hierarchy.

Within the variables specification, uncertain variable descriptions are employed to define the
parameter probability distributions (see Uncertain Variables on page 138).

When gradient and/or Hessian information is used in the uncertainty assessment, it is assumed
that derivative components will be computed only with respect tortbertain variablegwhere

all uncertain variables are continuous). The omission of discrete variables from gradient vectors
and Hessian matrices is common among all iterators (since derivatives with respect to discrete
variables do not exist); however, inclusion of only the uncertain variables differs from parameter
study iterators (which assume derivatives with respect to all continuous variables) and from
optimization and least squares iterators (which assume derivatives with respect to the continuous
design variables).

Monte Carlo Probability

The Monte Carlo probability iterator is selected usingwed probability specification.

This iterator performs sampling for different parameter observations within a specified parameter
distribution in order to assess the distributions for response functions. Probability of occurrence
is then assessed by comparing the response results against response thresholds.

All Monte Carlo methods are sampling methods which can be extremely expensive in terms of
the number of required function evaluations need to generate converged statistics. A different
nondeterministic approach that can be less computationally demanding is the mean value method
(see Mean Value on page 59).

DAKQOTA controls the observations, the random seed, the sample type (pure random or Latin
Hypercube), and the response thresholds for the Monte Carlo Probability method from its input
specification. See Monte Carlo Probability Method on page 175 for additional details on this
method specification.

User’s Instructions Uncertainty Assessment Capabilities - Introduction 58

Mean Value

The mean value method is selected usingitrel_mean_value specification. This iterator
computes approximate response function distribution statistics based on specified parameter
distributions. The mean value method is a direct analytical method and does not perform any
random sampling.

Since the mean value method does not perform random sampling, it can be much less
computationally demanding than the Monte Carlo approach (see Monte Carlo Probability on
page 58). However, since the method is based on Gaussian distribution assumptions and
linearizations, the accuracy of the statistics must be carefully evaluated.

DAKOTA controls the response file names for the mean value method from its input
specification. See Mean Value Method on page 176 for additional details on this method
specification.

User’s Instructions Uncertainty Assessment Capabilities - Mean Value 59

Nonlinear Least Squares Capabilities

Introduction

Nonlinear least squares methods in the DAKOTA system are optimizers which exploit the special
structure of a least squares objective function. These problems commonly arise in parameter
estimation and test/analysis reconciliation. In order to exploit the problem structure, response
data at a “finer grain” are required. Rather than using the least squares objective function and its
gradient, least squares iterators require each term in the sum-of-squares formulation along with
its gradient as the data set returned by the simulation. This means tindtitictions in the

DAKOTA response data set consist of the individual terms in the sum-of-the-squares objective
function, rather than an objective function andl constraint functions (as they are in the

optimizer branch). These individual terms are often called residuals in cases where they denote
errors of observed quantities from desired quantities. Refer to Rosenbrock Problem Formulation
on page 204 for an example showing the relationship between optimization and least squares
response functions.

This enhanced granularity allows for simplified computation of an approximate Hessian matrix
which only uses residual derivative information, since terms in the Hessian matrix which contain
residual second derivatives also contain the residuals themselves and will become negligible as
the residuals tend towards zero. That is, residual function and gradient information is sufficient to
define the value, gradient, and approximate Hessian of the least squares objective function.

In practice, least squares solvers will tend to be significantly more efficient than general-purpose
optimization algorithms when the residuals tend towards zero at the solution. Least squares
solvers may experience difficulty when the residuals at the solution are significant.

As for optimization iterators, it is assumed that gradient and/or Hessian information will be
computed only with respect to thentinuous design variable$he omission of discrete

variables from gradient vectors and Hessian matrices is common among all iterators (since
derivatives with respect to discrete variables do not exist); however, inclusion of only the
continuous design variables differs from parameter study iterators (which assume derivatives
with respect to all continuous variables) and from nondeterministic analysis iterators (which
assume derivatives with respect to the uncertain variables).

In order to specify a least-squares problem, the responses section of the Dakota input should be
configured usingiuum_least_squares_terms to define the number of functions, using
eithernumerical_gradients , analytic_gradients , ormixed_gradients to

define the gradients of these least squares terms, anchosingssians , since no Hessian

will be supplied from the simulator (it will be approximated internally).

User’s Instructions Nonlinear Least Squares Capabilities - Introduction 60

Gauss-Newton

Gauss-Newton iterators (DAKOTASptpp_g_newton andoptpp_bcg_newton methods)
approximate the true Hessian matrix by neglecting terms in which the residual function values
appear, under the assumption that the residuals tend towards zero at the solution. The Gauss-
Newton algorithm is part of the OPT++ package [Meza, J.C., 1994]. For a more complete
description of the OPT++ package, refer to OPT++ Library on page 55.

Gauss-Newton is a gradient-based algorithm and is best suited for efficient navigation to a local
least squares solution in the vicinity of the initial point. Global solutions in nonconvex design
spaces may be missed. DAKOTAptpp_g_newton andoptpp_bcg newton methods

differ in their support for bound constraints. Since bound constraints are commonly very
important for keeping parameters within physically meaningful rargdsp bcg_newton

will often be the method of choice for parameter estimation.

Neitheroptpp_g_newton noroptpp_bcg_newton support general linear or nonlinear
constraints. If these types of constraints are present (fairly rare in typical estimation problems),
general-purpose optimization methods such as those available in the DOT and NPSOL libraries
can be used (see DOT Library on page 54 and NPSOL Library on page 55). While neither DOT
nor NPSOL exploit the special structure of a sum of the squares objective function, both are
effective general-purpose algorithms for solving constrained minimization problems.

DAKOTA manages the following inputs for the Gauss-Newton method from its input

specification: the maximum number of iterations and function evaluations, the convergence
tolerance, the output verbosity, the search method, the maximum step, and the gradient tolerance.
See OPT++ Methods on page 165 for additional details on these specifications.

User’s Instructions Nonlinear Least Squares Capabilities - Gauss-Newton 61

Parameter Study Capabilities

Introduction

Parameter study methods in the DAKOTA system involve the computation of response data sets
at a selection of points in the parameter space. The response functions are not linked to any
specific interpretation, so tmefunctions in the DAKOTA response data set which are being
catalogued by the study can consist of any optimization, least squares, or generic response
function definition which is allowable by the responses input specification (see Responses
Commands on page 141). This allows a parameter study iterator to be used in direct conjunction
with optimization, least squares, and uncertainty quantification iterators without significant
modification to the input file. In addition, response data sets are not restricted to function values
only; gradients and Hessians of the response functions can also be catalogued by the parameter
study. This allows for several different levels of “sensitivity analysis”: (1) the variation of

function values over parameter ranges provides indirect information on the sensitivity of the
functions to those parameters, (2) derivative information can be computed numerically, provided
analytically by the simulator, or both (mixed gradients) in directly determining sensitivity
information at a point or points in parameter space, and (3) the variation of derivative quantities
through the parameter space can be investigated.

In addition to the cited sensitivity analysis applications, parameter study capabilities are also
commonly used for investigating simulation nonsmoothness issues (so that models can be tuned
for use with gradient-based optimization algorithms), generating parameter and response
ensembles for response surface generation or parameter space visualization, and performing code
verification (verifying simulation robustness) through parameter ranges of interest. A parameter
study iterator can also be used as either a pre-processor (to identify a good starting point) or a
post-processor (for post-optimality analysis) within a multilevel hybrid optimization strategy

(see Multilevel Hybrid Optimization on page 71), since each parameter study iterator can accept
the best design point found in a previous study as its starting point or pass along its best design
point for subsequent iteration or both. Note that only those parameter studies which use initial
values (see Initial Values on page 63) will be affected by accepting the best design point from
previous iteration. The best design point found in a parameter study is defined to be the point
with the least constraint violation, or if there are no violations, the point with the lowest objective
function.

Parameter study iterators will iterate any set of variables (any combination of design, uncertain,
and state variables) into any set of responses (any function, gradient, and Hessian definition), so
there are no restrictions on valid data set definitions. More specifically, parameter study iterators
draw no distinction between different types of variables and different types of response
functions. They simply pass all of the variables defined in the variables specification into the
interface, from which they expect to retrieve all of the responses defined in the responses
specification. The only subtle distinction involves the set of variables for which function

User’s Instructions Parameter Study Capabilities - Introduction 62

derivatives are computed. When gradient and/or Hessian information is being catalogued in the
parameter study, then it is assumed that derivative components will be computed with respect to
all of thecontinuousvariables (continuous design, uncertain, and state variables) specified. The
omission of discrete variables from gradient vectors and Hessian matrices is common among all
iterators (since derivatives with respect to discrete variables do not exist); however, inclusion of
all continuous variables differs from optimization and least squares iterators (which assume
derivatives only with respect to the continuous design variables) and from nondeterministic
analysis iterators (which assume derivatives only with respect to the uncertain variables). Lastly,
while discrete variables (if present) will be mapped through the interface, enumeration of the
discrete values of these variables by the parameter study methods is not yet supported.

Initial Values

The vector and centered parameter studies use the initial values of the variables from the
variables commands specification (see Variables Commands on page 134) as the starting point
and the central point of the parameter studies, respectively. In the case of design variables, the
initial_point is used. In the case of state variablesjritial_state is used. In the

case of uncertain variables, there is no initial value specification and 0.0 is used initially for each
of these variables (NOTE: the mean might be a better value than 0.0). Therefore, in the following
discussions, “Initial Values” are defined ioytial _point , initial_state , and 0.0 for

the design, state, and uncertain variables specified in the study, respectively.

Data Cataloguing

All parameter study algorithms catalogue the parameters and responses for each function
evaluation in a special file namddkota_pstudy.dat . This file is intended to simplify

plotting of parameter study data by making the data available in concise form separate from the
other information available in the main output file (idakota.out).

Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along a one-
dimensional vector in parameter space. This capability encompasses both single-coordinate
parameter studies (to study the effect of a single variable on a response set) as well as multiple
coordinate vector studies (to investigate the response variations along some n-dimensional
vector). In addition to these uses, this capability is used recursively within the implementations

of the centered and multidimensional parameter studies (see Centered Parameter Study on page
66 and Multidimensional Parameter Study on page 67).

Dakota’s vector parameter study includes three possible specification formulations which are
used in conjunction with the Initial Values to define the vector and steps of the parameter study:
{final_point = <LISTof><REAL>} and {step_length = <REAL>}

User’s Instructions Parameter Study Capabilities - Vector Parameter Study 63

{final_point = <LISTof><REAL>} and {num_steps = <INTEGER>}
{step_vector = <LISTof><REAL>} and {num_steps = <INTEGER>}

In each of these three cases, the Initial Values are used as the parameter study starting point and
the specification selected from the three above defines the orientation and length of the vector as
well as the increments to be evaluated along the vector. Several examples starting from Initial
Values of 1.0, 1.0, 1.0 are included below:

final_point =1.0, 2.0, 1.0 anstep_length = .4:

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.0000000000e+00 d1
1.4000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 3:
1.0000000000e+00 d1
1.8000000000e+00 d2
1.0000000000e+00 d3

final_point =2.0,2.0, 2.0 anstep_length = .4:

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2;
1.2309401077e+00 d1
1.2309401077e+00 d2
1.2309401077e+00 d3

Parameters for function evaluation 3:
1.4618802154e+00 d1
1.4618802154e+00 d2
1.4618802154e+00 d3

Parameters for function evaluation 4:
1.6928203230e+00 d1
1.6928203230e+00 d2
1.6928203230e+00 d3

Parameters for function evaluation 5;:
1.9237604307e+00 d1
1.9237604307e+00 d2
1.9237604307e+00 d3

final_point =2.0, 2.0, 2.0 andum_steps =4:

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.2500000000e+00 d1
1.2500000000e+00 d2
1.2500000000e+00 d3

User’s Instructions Parameter Study Capabilities - Vector Parameter Study 64

Parameters for function evaluation 3:
1.5000000000e+00 d1
1.5000000000e+00 d2
1.5000000000e+00 d3

Parameters for function evaluation 4:
1.7500000000e+00 d1
1.7500000000e+00 d2
1.7500000000e+00 d3

Parameters for function evaluation 5;
2.0000000000e+00 d1
2.0000000000e+00 d2
2.0000000000e+00 d3

step_vector =.1,.1,.1 andum_steps =4:

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.1000000000e+00 d1
1.1000000000e+00 d2
1.1000000000e+00 d3

Parameters for function evaluation 3:
1.2000000000e+00 d1
1.2000000000e+00 d2
1.2000000000e+00 d3

Parameters for function evaluation 4:
1.3000000000e+00 d1
1.3000000000e+00 d2
1.3000000000e+00 d3

Parameters for function evaluation 5:
1.4000000000e+00 d1
1.4000000000e+00 d2
1.4000000000e+00 d3

For additional information, refer to the commands specification for Vector Parameter Study on
page 176.

List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. These
points are explicitly specified by the user and are not confined to lie on any line or surface.

This iterator requires the following specification:
{list_of points = <LISTof><REAL>}

This parameter study simply performs simulations for the first parameter set (thredingies in
the list), followed by the next parameter set (the neamtries), and so on, until the list of points
has been exhausted. Since the Initial Values will not be used, they need not be specified.

User’s Instructions Parameter Study Capabilities - List Parameter Study 65

An example specification which would result in the same parameter sets as in the first example in
Vector Parameter Study on page 63 would be:
list of points=1.0,1.0,1.0,1.0,1.4,1.0,1.0,1.8,1.0

For additional information, refer to the commands specification for List Parameter Study on page
178.

Centered Parameter Study

The centered parameter study executes multiple vector parameter studies, one per parameter,
centered about the specified Initial Values. This is useful for investigation of function contours in
the vicinity of a specific point. For example, after computing an optimum design, this capability
could be used for post-optimality analysis in verifying that the computed solution is actually at a
minimum or constraint boundary and in investigating the shape of this minimum or constraint
boundary.

This iterator requires the following specifications:

{percent_delta = <REAL>}
{deltas_per_variable = <INTEGER>}

wherepercent_delta specifies the size of the increments in percent and
deltas_per_variable specifies the number of increments per variable in each of the plus
and minus directions.

For example, with Initial Values of 1.0, 1ffiercent_delta =10.0, and
deltas_per_variable = 2, five function evaluations (two minus deltas, the center point,
and two plus deltas) would be performed per variable:

Parameters for function evaluation 1:
8.0000000000e-01 d1
1.0000000000e+00 d2

Parameters for function evaluation 2:
9.0000000000e-01 d1
1.0000000000e+00 d2

Parameters for function evaluation 3:
1.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 4:
1.1000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 5:
1.2000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 6:
1.0000000000e+00 d1
8.0000000000e-01 d2

Parameters for function evaluation 7:
1.0000000000e+00 d1
9.0000000000e-01 d2

Parameters for function evaluation 8:

User’s Instructions Parameter Study Capabilities - Centered Parameter Study 66

1.0000000000e+00 d1
1.0000000000e+00 d2
Parameters for function evaluation 9:
1.0000000000e+00 d1
1.1000000000e+00 d2
Parameters for function evaluation 10:
1.0000000000e+00 d1
1.2000000000e+00 d2

This set of points in parameter space is depicted in Figure 13
d2
A

0 I > dl
1

Figure 13 Example centered parameter study.

For additional information, refer to the commands specification for Centered Parameter Study on
page 178.

Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for an n-dimensional
hypergrid of points. Each continuous variable is partitioned into equally spaced intervals between
its upper and lower bounds, and each combination of the values defined by these partitions is
evaluated. The number of function evaluations performed in the study is:

n

|_| (partitions +1) (6)
i =1

The partitions information is specified as follows:
{partitions = <LISTof><INTEGER>}

User’s Instructions Parameter Study Capabilities - Multidimensional Parameter Study 67

where the entries in the list specify the number of partitions for each continuous variable (i.e.,
partitions i). Since the Initial Values will not be used, they need not be specified.

In a two variable example problem with d1[0,2] and d21 [0,3] (as defined by the upper and
lower bounds specified in the variables specification) andpaitfitions = 2,3 , the

interval [0,2] is divided into two equal-sized partitions and the interval [0,3] is divided into three
equal-sized partitions. This two-dimensional grid, shown in Figure 14,

d2

31 ® o

20 ® o
3 partitions

le ® ®

0® z % > dl

2 partitions

Figure 14 Example multidimensional parameter study

would result in the following twelve function evaluations:

Parameters for function evaluation 1;
0.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 2:
1.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 3:
2.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 4:
0.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 5;:
1.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 6:
2.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 7:
0.0000000000e+00 d1

User’s Instructions Parameter Study Capabilities - Multidimensional Parameter Study 68

User’s Instructions

2.0000000000e+00 d2
Parameters for function evaluation 8:
1.0000000000e+00 d1
2.0000000000e+00 d2
Parameters for function evaluation 9:
2.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 10:

0.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 11:

1.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 12:

2.0000000000e+00 d1
3.0000000000e+00 d2

Parameter Study Capabilities - Multidimensional Parameter Study

For additional information, refer to the commands specification for Multidimensional Parameter
Study on page 179.

69

Strategy Capabilities

Introduction

Dakota’s strategy layer was developed to provide a means for management of multiple iterators,
models, and approximations. It was driven by the observed need for high level “meta-control” of
optimization and other system analysis processes. By providing an additional level of logic on

top of the iterators, it becomes possible to develop adaptive strategies which switch and refine
iterators and models based on run-time performance assessments. This adaptive control can lead
to automated procedures which exploit the capabilities of several iterators, manage varying

model fidelity, and incorporate approximations for the purpose of navigating to the solution more
reliably and efficiently than with single method approaches.

Several advanced approaches are available within the strategy class hierarchy shown in Figure
12. In the multilevel hybrid strategy, two or more optimizers are combined in a hybrid strategy in
which the best point from one iterator is used as the starting point for a subsequent iterator. Fine-
grained control, effective switching metrics, and the existence of multiple iteration follow-on
candidates from some global methods are important research issues. The single method strategy
invokes only one iterator and can be viewed as a “fall through” strategy in that no additional
coordination is performed at the strategy layer and control falls through to the iterator. The
branch and bound strategy is used for solution of mixed continuous/discrete applications. The
nondeterministic optimization strategy (a.k.a. optimization under uncertainty) incorporates an
uncertainty quantification within the optimization process. It can be used to minimize stochastic
guantities, such as probability of failure. Use of nested and segregated frameworks is an
important research issue. In the sequential approximate optimization strategy, an optimizer is
interfaced with an approximate design space representation in order to find an approximate
optimal solution. “Exact” evaluations at this approximate optimal solution are then used to

update the approximation and restart the sequence. Here, the effective use of experimental design
techniques, the development of accurate approximations using a minimal number of function
evaluations, and the development of provably convergent approaches for sequential
approximation are important research issues.

In addition to management of multiple iterators and models, the strategy layer implements the
master-slave algorithm for exploiting parallelism by providing separation of iterator code (the
master processor) from model server code (the slave processors). Refer to Exploiting Parallelism
on page 99 for additional details.

Several strategies continue to be works in progress. Therefore, “STATUS” statements have been
added at the end of each of the following strategy descriptions.

User’s Instructions Strategy Capabilities - Introduction 70

Single Method

The single method strategy is implemented withinSimgleMethodStrategyclass and is

invoked with thesingle_method selection in the user’s strategy section specification (see
Single Method Commands on page 152 for additional specification details). The single method
strategy is also used as the default strategy if no strategy specification is included in the user’s
input file.

The single method strategy is used to invoke a siDgletalterator object which iterates on a
singleDakotaModel object. This “strategy” is provided since the main program of DAKOTA is
bound to the instantiation and execution of one of the strategies withiDdketaStrategy class
hierarchy. That is, even if coordination of multiple iterators and models is not needed, a simple
strategy is still required to create the iterator and the model and perform the iteration.

STATUS: Fully operational.

Multilevel Hybrid Optimization

The multilevel hybrid strategy is implemented within MeltilevelOptStrategy class and is

invoked with themulti_level selection in the user’s strategy section specification (see

Multilevel Hybrid Optimization Commands on page 152 for additional specification details).

There are three multilevel approaches available: the uncoupled approach, the uncoupled adaptive
approach, and the coupled approach.

The Uncoupled Approach

In the uncoupled approach, a sequence of methods is invoked in the order specified in a method
list specification. The best solution from each method is used as the starting point for the
following method. Method switching is governed by the separate convergence controls of each
method; that isgach iterator is allowed to run to its own internal definition of completion

without interferencelndividual method completion may be determined by convergence criteria
(e.g.,convergence_tolerance) or iteration limits (e.g.max_iterations).

The basic algorithm, in simplified form, is shown in Figure 15:

User’s Instructions Strategy Capabilities - Single Method 71

for (i=0; i<numiterators; i++) { J[F(Q)uglolrtrc]erfgggn
iteratorsJ[i].run_iterator(); / P
if (i+1 < numlterators) { Transfer
vars_star = iterators[i].best_variables(); best vars.
iterators[i+1].design_variables(vars_star); to next
} iterator
}

Figure 15 Uncoupled multilevel hybrid optimization strategy

whererun_iterator() andbest_variables() are virtual functions which define a
generic behavior valid for all iterators for which the specific implementation can vary. This
strategy is relatively simple since the only coordination required is the transferral of the best
solution between successive iterators.

STATUS: Fully operational.

The Uncoupled Adaptive Approach

The simple uncoupled approach is being extended through development of more finely grained
iterator control using “iterator++” overloaded operators. In this approgtimization

algorithms are incremented one optimization cycle at a &eintkintermediate performance data

are returned as a basis for adaptive switching. For example, a gradient-based optimization cycle
consists of computing objective and constraint gradients, computing a search direction using
these gradients, and performing a line search along the search direction to find an improved
point. By executing an optimizer one cycle at a time, a history of improved points can be logged
and relative performance metrics can be defined. These performance metrics are fundamentally
different than the convergence metrics used in the nonadaptive approach: convergence metrics
typically assess whether the method can make any additional progress within a specified
tolerance (e.g., are the Kuhn-Tucker conditions for a constrained minimum approximately
satisfied?) whereas performance metrics measure the rate of progress (i.e., has the rate of
improvement in objective minimization and/or constaint satisfaction decreased significantly?).
While this distinction is somewhat fuzzy since some convergence metrics (e.g., convergence
tolerance on relative change in the objective function) are similar to a rate of progress metric, the
key point is that we may want to terminate a method prior to its formal convergence and switch
to another method. Put another way, this distinction can be cast as “are we there?” versus “how
fast are we getting there?” Certainly, the former question is most appropriate when one method is
available; however, the availability of multiple methods in a hybrid strategy admits a more
aggressive approach.

The basic algorithm, in simplified form, is shown in Figure 16:

User’s Instructions Strategy Capabilities - Multilevel Hybrid Optimization 72

for (i=0; i<numlterators; i++) {
while (progMetric >= progThreshold) { Optimization loop:
iterators[i]++; Increment 1 cycle
r_star = iterators|i].best_responses(); Get results
progMetric = compute_progress(r_star); Compute progress
}
if (i+1 < numlterators) { Transfer
vars_star = iterators[i].best_variables(); best vars.
iterators[i+1].design_variables(vars_star); to next
} iterator
}

Figure 16 Uncoupled adaptive multilevel hybrid optimization strategy

where the overloadett+ operatorpest_responses() , andbest_variables() are

virtual functions, anghrogThreshold contains a user specified progress threshold (see
Multilevel Hybrid Optimization Commands on page 152). This strategy requires considerably
more sophistication than the standard uncoupled approach since additional mechanisms for cycle
control and progress computation are required for all of the optimizers.

Definition of an appropriate progress metric can be troublesome when attempting to encompass
broad classes of methods. In general, the DAKOTA approach to this is to compute rate of
convergence history information over a series of optimization cycles. When rate of improvement
slows from previous cycles, tipgogMetric (normalized between 0.0 and 1.0) will be small

and may fall below thprogThreshold and trigger a method switch. By selecting a large
progThreshold value (closer to 1.0), the user can specify aggressive method switching in
which a slight decrease in convergence rate will trigger a switch, whereas a small
progThreshold (closer to 0.0) will be considerably more tolerant of (perhaps transient)
decreases in convergence rate. In this latter case, the adaptive approach may perform much like
the uncoupled approach and, in fact, the internal convergence criteria may trigger method
completion prior tgorogMetric triggering a method switch.

STATUS: adaptive “iterator++” approach under development.

The Coupled Approach

The coupled approach implements specific hybrid algorithms available within SGOPT which
exploit a tighter coupling to achieve peak performance. For example, whereas an uncoupled GA/
local search hybrid would use the best solution found from a GA to start a local search, a coupled
hybrid would use local search to occasionally improve members in an evolving GA population.
That is, in an uncoupled approach, multiple methods run one at a time sharing only their best
results at completion, while in a coupled approach, methods are working together throughout the
strategy to synergistically improve the solution.

User’s Instructions Strategy Capabilities - Multilevel Hybrid Optimization 73

Whereas in the uncoupled approach, the number of methods and possible combinations are
unlimited, the coupled approach has only a few allowable method combinations. Only two
methods are specified (as opposed to an open-ended method list): one global method and one
local method. The allowable global methods are curragibpt pga real and

sgopt_strat mc , and the allowable local methods are curresgigpt_solis_wets ,
sgopt_coord_ps , andsgopt_coord_sps . More methods will be allowable selections in
future releases. In thegopt_pga_real case, local search is used to periodically improve GA
population members. In tisgopt_strat_mc case (also known as “multi-start local search”),
local search is applied with a prescribed probability to Monte Carlo samples. When a local
search is performed, it is performed immediately (prior to evaluation of the next sample). This
type of iterator coordination makes it a coupled approach by definition, although in this case it
only differs from an uncoupled approach (in which local searches would be performed after all
sampling was complete) in the effect of order-dependent termination criteria such as
max_function_evaluations and, possibly, in how iteration follow-on candidates are
selected. Thegopt_strat_mc coupled hybrid is not a particularly sophisticated hybrid and
is not recommended for optimization with expensive engineering simulations. It is primarily
useful for its theoretical simplicity as a benchmark for comparison with more efficient
approaches (i.e., the GA coupled hybrids).

STATUS: strategy wrapper for SGOPT multi-start and global/local hybrids under development.

Sequential Approximate Optimization

The sequential approximate optimization strategy is implemented within the
SegApproxOptStrategy class and is invoked with tiseq_approximate_opt selection in

the user’s strategy section specification (see Sequential Approximate Optimization Commands
on page 154 for additional specification details).

In theseq_approximate_opt strategy, two modela¢tualModel andapproxModel)

and one iteratorsglectedlterator) are constructed. ThagpproxModel contains one of

the approximation methods from the hierarchy described in The Approximation Interface on
page 95 and thactualModel contains one of the simulation interfacing methods described in
The Application Interface on page 79. First, the approximation wégjgnroxModel is built

using function evaluations which are selected via a design of experiments and which are
performed with thectualModel . Theselectedlterator then iterates on

approxModel (it is bound to this model in the strategy constructor) and computes an
approximate optimum. This approximate optimum is evaluated witadtu@lModel and the
resulting parameter/response pair is evaluated for improvement from the previous cycle and for
convergence of the process. Based on the observed improvement, the extent (i.e. bounds) of the
approximation is modified via trust region concepts. If the process is not converged, then the new
parameter/response pair from tualModel is used to update tteproxModel

Iteration is then reinitiated on the updasggproxModel and the process repeats until
convergence. It is worth emphasizing that the iterator only iteratagmoxModel . The

User’s Instructions Strategy Capabilities - Sequential Approximate Optimization 74

actualModel is only used for building and updating the approximation and is never iterated
directly.

The basic algorithm, in simplified form, is shown in Figure 17:

approxModel.build_approximation(); Initialize approx.

while (conv_metric > conv_tol) { Main loop:
selectedlterator.run_iterator(); Optimize approx.
v_star = selectedlterator.best_variables(); Get approx. soln.
r_star = actualModel.compute_response(v_star); Evaluate soln.
approxModel.modify _approximation(r_star); Modify extent
approxModel.update_approximation(v_star,r_star); Add new data

}
Figure 17 Sequential approximate optimization strategy

whererun_iterator() andbest_variables() are virtual functions within the iterator

hierarchy andbuild_approximation() , modify_approximation() , and

update_approximation() are virtual functions within the interface hierarchy. It is critical

for themodify _approximation() step to perform operations (e.g., modify trust regions)

which assure convergence of the sequential process.

STATUS: Operational, but undergoing convergence enhancements.

Optimization Under Uncertainty

The optimization under uncertainty strategy is implemented withiNaém®OptStrategy class

and is invoked with thept_under_uncertainty selection in the user’s strategy section
specification (see Optimization Under Uncertainty Commands on page 154 for additional
specification details).

In theopt_under_uncertainty strategy, two modelslésignModel and

uncertainModel) and two iteratorsdptlterator andnonDlterator) are constructed.
ThedesignModel provides a mapping of a set of design variables into a set of design
responses (an objective function and constraints) through the use of one interface, whereas the
uncertainModel maps a set of uncertain variables into a set of uncertain responses through
another interface. Theptlterator iterates ordesignModel in the optimization loop and
thenonDlterator iterates oruncertainModel in the uncertainty quantification loop.

Note thathe mappings for both models are determinjstits the ensemble of

uncertainModel mappings based on the set of uncertain variable realizations that provide
the desired statistics for the uncertain responses.

In the case of a nested approach, the optimization loop is the outer loop which seeks to optimize
a nondeterministic quantity (e.g., minimize probability of failure). The uncertainty quantification

User’s Instructions Strategy Capabilities - Optimization Under Uncertainty 75

inner loop evaluates this nondeterministic quantity (e.g., compute the probability of failure) on
each optimization function evaluation.

For a segregated approach, the loops are not nested, rather they are executed in repeated
succession until convergence. The coupling of the uncertainty quantification to the design
process occurs through the adjustment of the optimization objective and constraints in order to
modify the statistical performance of the optimal design computed (e.g., to adjust the probability
of failure of a minimum weight design by changing the stress allowables). The nested approach
is desirable since it removes the compounded expense of nested loops; however, the logic for
modifying the design objectives is heuristic and application-dependent.

STATUS: Under development. Not yet operational.

Branch and Bound

The branch and bound strategy is implemented withiBthachBndStrategy class and is
invoked with thebranch_and_bound selection in the user’s strategy section specification
(see Branch and Bound Commands on page 155 for additional specification details).

It employs the PICO branching engine ([Eckstein, J., Hart, W.E., and Phillips, C.A., 1997]) in
combination with DAKOTAs multilevel parallelism facilities ([Eldred, M.S., and Schimel, B.D.,
1999]) to enable parallel solution of nonlinear mixed continuous and discrete problems through
parameter domain decomposition (branching) and nonlinear solution of optimization
subproblems with relaxation of integrality constraints (bounding).

STATUS: Operational. To be available in DAKOTA V1.2.

User’s Instructions Strategy Capabilities - Branch and Bound 76

Simulation Interfacing

Dakota Interface Abstraction

DAKOTA's interfacing capabilities are encompassed within an interface abstraction. This
abstraction is the general concept of mapping a set of parameters into a set of responses for the
purpose of performing a function evaluation. The implementation of this abstraction within the
Dakotalnterface class hierarchy involves the use of a variety of evaluation mechanisms and
communication protocols, each of which shares this common functionality of parameter to
response mapping. Supported evaluation mechanisms currently include interfacing with
simulation codes, employing response approximations, and employing internal testing functions.
And currently supported communication protocols include system calls with file communication,
direct function invocations with parameter list communication, and parallel message-passing (for
either direct communication with simulations or in combination with system call and direct
function invocation and communication). In addition, coordination of disciplinary simulations for
multidisciplinary optimization with the global sensitivity equations is a natural extension to the
supported evaluation mechanisms, and CORBA and JAVA binding with geographically
distributed analysis services (e.g., for interface with Sandia’s CORBA-based Product Realization
Environment) is an attractive extension to the supported communication protocols. These
additions will continue to extend the breadth of possible DAKOTA problem solving
environments.

DAKOTA provides a framework for the implementation of these evaluation mechanisms and
communication protocols within tH2akotalnterface class hierarchy shown in Figure 18. The
Dakotalnterface base class provides the starting point from which specialized interface
mechanisms are created. This base class contains the mgpé&inction which each derived

class must redefine in order to implement its particular mechanism for generating responses from
a set of parameters. Furthermore, this base class provides the envelope for derived letter classes
in a letter/envelope idiom design. The letter/envelope idiom is an advanced C++ construct which
provides mechanisms for enhanced polymorphism (the envelope is a generic handle for any
derived class) and for smart memory management through reference counting [Coplien, J.O.,
1992].

User’s Instructions Simulation Interfacing - Dakota Interface Abstraction 77

Dakotalnterface

Applicationinterface Approximationinterface

N

SysCall DirectFn ANN RSM | |[MARS| | MPA

Figure 18 The Dakotalnterface class hierarchy

The Applicationinterface andApproximationinterface classes provide base classes for those
interfaces dealing with simulation codes and response approximations, respectively. Within the
Applicationinterface branch, simulation codes may be interfaced using system calls (the
SysCallApplicinterface class) or through direct function calls (fbeectFnApplicinterface

class). The system call application interface communicates with the simulation it spawns through
the use of files. In this case, data formats are very important (see DAKOTA File Data Formats on
page 85). However, in the direct function application interface case, C++ references to data
structures are passed directly to the simulation; files and specialized data formats are not needed.
In addition to invoking simulations which are linked into the DAKOTA executable, the direct
function application interface is also used for algorithm testing with internal test functions, so it
serves a dual purpose.

The Approximationinterface branch implements a variety of approximations which can be used
as surrogates in place of actual simulations. ANNApproxInterface , RSMApproxinterface,
andMARSApproxInterface classes implement artificial neural networks, response surface
methods, and multivariate adaptive regression splines, respectively. In addition, an
MPAApproxInterface class is planned for implementing multipoint approximations. Each of
these approximation classes must implement methods for building, updating, modifying, and
performing function evaluations with the approximation.

User’s Instructions Simulation Interfacing - Dakota Interface Abstraction 78

The Application Interface

Iterator |-t

Application Interface

r— — — — — |
Parameters : %Fglél%tr%r : Responses
Optional

Analysis Driver
L -

Figure 19 The Application Interface Concept

By providing a generic interface for the mapping of a set of parameters (e.g., the vector of design
variables) into a set of responses (e.g., an objective function, constraints, and sensitivities), the
Application Interface hides the specific complexities of a given problem from the iterator
method. All of an application’s disciplinary specifics and implementation details are
encapsulated within the Application Interface box in Figure 19. External to that box, the data
flows between the iterator and the simulator are generic and abstract. Isolation of complexity
through the development of generic interfaces is a cornerstone of object-oriented design (the
concept of “one interface, many methods”).

Housed within the Application Interface are three main components. The input filter program
(“IFilter” in Figure 19) provides a communication link which transforms the set of DAKOTA
input parameters into the input required by the simulator program. The simulator program reads
its input and computes its results (a driver program/script is optional and is used to accomplish
nontrivial command syntax and/or progress monitoring). Finally, the output filter program
(“OFilter” in Figure 19) provides another communication link through the recovery of data from
the simulation results and the computation of the desired response data set. The two filter
programs are generally application specific, although it is a project goal to maximize reusability
through the build-up of generic libraries of filtering capabilities over time. Note that the input
and output filters are part of the Application Interface and are named “input” and “output”
relative to the simulator program.

The Application Interface mapping can be accomplished in several ways. The two ways currently
in use are the direct function and system call methods. The former uses direct invocation of
linked-in functions to perform the parameter to response mapping, whereas the latter uses system
calls to external programs and file-based communication to perform the mapping. In both of
these cases, either a 3-piece interface or a 1-piece interface may be used, which differ in whether
or not they use filter programs. The following sections describe these two approaches as
embodied in the direct function application interface and system call application interface

classes.

User’s Instructions Simulation Interfacing - The Application Interface 79

Following the discussion of the direct function and system call application interfaces, techniques
for capturing simulation failures within application interfaces are presented. Failure recovery
options include abort, retry, recover, and continuation.

The Direct Function Application Interface

The direct function application interface capability may be used to invoke simulation codes
which are linked into the DAKOTA executable or to invoke internal test functions for algorithm
performance testing. This option, in an earlier incarnation, was used in the TWAFER CVD
heater design application ([Moen, C.D., Spence, P.A., Meza, J.C., and Plantenga, T.D., 1996],
[Moen, C.D., Spence, P.A., and Meza, J.C., 1995], and [Meza, J.C., and Plantenga, T.D., 1995])
in order to improve data precision and efficiency by eliminating system calls for filter programs
and file transfer of parameter/response data. In this earlier incarnation, a system call was still
required for the simulator program since, although the TWAFER filters were compiled into the
Dakota executable, the TWAFER simulation code was not. In the current direct function and
system call capabilities, the entire parameter to response mapping must be accomplished with
either system calls or direct function calls. No combinations are allowed.

In order to use the direct function capability with a new simulation or new test function (not
previously interfaced), the following steps have to be performed:

1. the functions to be invoked must have their main programs changed into callable functions
with the following prototypeint function_name(const DakotaVariables&
vars, const DakotalntArray& asv, DakotaResponse& response) . The
same prototype is used for filter and analysis programs (which departs from the distinctions
between filters and analysis shown in the command line file name passing procedures of The
System Call Application Interface on page 81).

2. the if-else blocks iDirectFnApplicinterface::execute() must be extended to include the
new function names with the proper prototypes

3. the DAKOTA system must be recompiled and linked with the new function object files or
libraries

Various header files will have to be included in order to compile successfully, both within the
DirectFnApplicinterface class (in order for the class to recognize the new functions) and within
the new functions themselves (in order to recogniz®#ietaVariables

DakotalntArray , andDakotaResponse types).

The direct function capability is new and evolving. Future work may include removal of the
dependence of user-supplied routines on DAKOTA objects by replacing the objects with more
fundamental data structures (vectors of ints and doubles), and installation of the “builder pattern”
(see [Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995]) for management of multiple
user-supplied routines.

User’s Instructions Simulation Interfacing - The Direct Function Application Interface 80

3-piece Interface

In the 3-piece case, the parameters to responses mapping occurs in 3 separate steps. Each of the
functions identified by thanput_filter , analysis_driver , andoutput_filter
specifications will be invoked in succession.

1-piece Interface

If the analysis_driver specified in the interface section is to perform the complete
parameters to responses mapping and no additional filters are needed, then only one function
invocation will occur. This 1-piece interface is accomplished through the use of the
“NO_FILTER” option (the default) in thimput_filter andoutput_filter

specifications.

The System Call Application Interface

The system call approach invokes a simulation code or simulation driver by ussygtima

function from the C standard library ([Kernighan, B.W., and Ritchie, D.M., 1988]) to create a
new process. This new process communicates with DAKOTA through parameter and response
files. The system call approach eliminates the need to modify simulation source code since the
simulation can be initiated via its standard invocation procedure and then coordinated with any
variety of tools for pre- and post-processing. The simulation can be viewed as a “black box” for
which the filter programs provide the communication links and the parameters and responses
files provide the communication data. This approach has been widely used in [Eldred, M.S.,
Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G., 1996], [Eldred,
M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R., and Chen,
K.S., 1996], and many others. The system call approach involves more process overhead than the
direct function approach; however, this is most often of very little significance compared to the
expense of the simulations. Lastly, the system call approach can suffer from precision problems
if care is not taken to preserve data precision in parameter and response file 1/0. The following
sections describe system call functionality for the cases of separate filter programs (the 3-piece
interface) and no filter programs (the 1-piece interface).

3-piece Interface

The syntax of the system call that Dakota performs for a 3-piece interface is
(ifilter_name params.in; analysis_driver_name; ofilter_name
results.out)
in which the input filter, analysis, and output filter processes are combined into a single system
call through the use of semi-colons and parentheses (see [Anderson, G., and Anderson, P.,
1986]). This single system call is equivalent to 3 separate system calls; however, they are bound

User’s Instructions Simulation Interfacing - The System Call Application Interface 81

together to simplify asynchronous process management (test and receive synchronization
operations).

The input filter is passed the name of the parameters file on the command line and the output
filter is likewise passed the name of the results file on the command line. By passing the names
of files on the command lines of executable programs, Dakota can communicate with these
executables using unique and/or tagged file names (e.g., UNIX temporary files or root names
tagged with function evaluation number). Having the option of using unique file names allows
for multiple simultaneous simulations running in a common disk space.

1-piece Interface

If the analysis_driver specified in the interface section is to perform the complete
parameters to responses mapping and no additional filters are needed, then only one process will
appear in the system call. This 1-piece interface is accomplished through the use of the
“NO_FILTER” option (the default) in thaaput_filter andoutput_filter

specifications.

The system call syntax is:
(analysis_driver_name params.in results.out)

Since there are no filters, the names of the parameters and results files are both passed on the
command line to thanalysis_driver

Additional Features

This section describes interfacing options for file saving, file tagging, Unix temporary files, and
common filtering operations. For details on specification of these options, refer to Interface
Commands on page 127. When executing DAKOTA, the actual system calls performed as well as
informational messages on file renaming or removal are echoed to stdout in order for the user to
verify proper operation of the software.

File saving

Thefile_save option in the interface specification allows the user to control whether
parameters and results files are retained or removed from the working directory. Default behavior
is to remove files once their use is complete in order to declutter working directories. However,
by specifyindfile_save in the interface specification, these files will not be removed. This
latter behavior is often useful for debugging communication between Dakota and simulator
programs.

File tagging

Thefile_tag option in the interface specification allows the user to make the names of the
parameters and results files unique by appending a function evaluation number to the root file

User’s Instructions Simulation Interfacing - The System Call Application Interface 82

names specified in thgarameters_file andresults_file specifications. Default

behavior is to not tag these files. The default behavior has the advantage of allowing the user to
ignore command line argument passing and always read and write to/from the same file names,
but has the disadvantage that nonunique file names may be overwritten from one function
evaluation to the next. On the other hand, by specifijiagtag in the interface

specification, these files become unique through the appended evaluation number. This is most
often used when multiple simultaneous simulations are running in a common disk space, since it
becomes necessary to prevent conflicts (file overwriting) between the simultaneous simulations
by uniquely identifying files according to their evaluation num®pecial caseéWWhen

file_save is used withoutile tag , untagged files are used in the function evaluation but
are then moved to tagged file names after the function evaluation is complete (and before the
next evaluation starts) in order to prevent overwriting files for whide ssave request has

been given.

Unix temporary files

If parameters_file andresults_file are not included in the interface specification,

then the default mechanisms for file communication are Unix temporary filegustdmp/
aaaa08861). These files have unique names as created kynitream utility from the C

standard library ([Kernighan, B.W., and Ritchie, D.M., 1988]). This uniqueness makes it a
requirement for the user’s interface to retrieve the names of these files from the command line.
File tagging is unnecessary with Unix temporary files (since they are already unique); thus,
file_tag requests will be ignorefile_save requests will be honored, although this

option is not recommended for the purpose of keeping the temporary file directory uncluttered.

Common filtering operations

A mechanism has been constructed for the implementation of common/generic filtering
operations which are relatively application-independent. By providing mechanisms for common
I/O filtering operations, the work in developing filters for new applications can be minimized.
Examples of common filtering operations include design variable linking on the input filter side
and filtering of noisy response time histories on the output filter side. These common filtering
operations comprise a second level of filtering implemented externally to the inner layer of
application-specific filtering. This additional filtering layer is encapsulated in the
Applicationinterface class and is currently inactive. That is, it is a placeholder for future
extensions.

Examples

The NO_FIITER option

In a 1-piece interface (the NO_FILTER option), the user provides a single script or executable
that accepts two command-line arguments: a parameters file name and a responses file name.

User’s Instructions Simulation Interfacing - The System Call Application Interface 83

This executable must read the parameters file and write the appropriate data to the responses file.
If a user creates a script/executable named “my_analysis” (the name of the
analysis_driver), selects “params.in” as tiparameters_file name and “results.out”
as theresults_file name, and employs the defaults of no file saving and no file tagging,
then system calls with the following syntax will be spawned by Dakota:
(my_analysis params.in results.out)

If file_tag IS requested, system calls like the following will be used:
(my_analysis params.in.1 results.out.1)

If UNIX temporary files are used (rparameters_file orresults_file specification),
system calls like the following will be used:
(my_analysis /usr/tmp/aaaa20305 /usr/tmp/baaa20305)

In the first of these three cases, the user need not retrieve the command line arguments since the
same file names will be employed each time. With the latter two cases, the user must retrieve the
command line arguments since the file names change on each evaluation. In the case of a C-shell
script, the two command line arguments are retrieved $&sirgy[1] and$argv[2] (see

[Anderson, G., and Anderson, P., 1986]). In the case of a C or C++ program, command line
arguments are retrieved usiaggc (argument count) amakgv (argument vector) [Kernighan,

B.W., and Ritchie, D.M., 1988]. Fortran 77 does not support command line arguments; in this
case, a shell script wrapper can be built around the Fortran program to handle unique file names
(by, for example, creating a tagged working directory for the Fortran simulation and moving the
unique file name to a hardwired file name within the working directory).

If file_save is not set, a file remove notification will follow the system call echo, e.qg.:
Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

If nonunique file names are to be savild (save is set without eithéiile_tag being set

or UNIX temporary files being used), then these files will be saved by moving them to tagged
files after the evaluation is complete to prevent overwriting them on subsequent evaluations. In
this case, the following notification is echoed:

Files with nonunique names will be tagged to enable
file_save:

Moving params.in to params.in.1

Moving results.out to results.out.1

The named filter option

In a 3-piece interface (the named filter option), the user chooses to create separate input and
output filters that perform the data translations between Dakota and the simulator program. The
input filter translates a standard Dakota parameters file into an analysis code input file, the
simulator runs and produces data, and then the output filter translates the analysis code output file
or database into a standard Dakota results file. If a user is employamglgiais_driver

named “my_analysis,” amput_filter named “my_ifilter,” aroutput_filter named
“my_ofilter,” selects “params.in” as tlparameters_file name and “results.out” as the

User’s Instructions Simulation Interfacing - The System Call Application Interface 84

results_file name, and employs the defaults of no file saving and no file tagging, then
system calls with the following syntax will be spawned by Dakota:
(my_ifilter params.in; my_analysis; my_ofilter results.out)

If file_tag is requested, system calls like the following will be used:
(my_ifilter params.in.1; my_analysis; my_ofilter
results.out.1)
If UNIX temporary files are used (rparameters_file orresults_file specification),
system calls like the following will be used:

(my_ifilter /usr/tmp/aaaa22490; my_analysis; my_ofilter /
usr/tmp/baaa22490)

Similar to the 1-piece case, the user’s input and output filters must retrieve the command line
arguments in the latter two of the three cases above since the file names change on each
evaluation. Identical to the 1-piece case, omittingitbkesave flag will result in the
following action

Removing /usr/tmp/aaaa22490 and /usr/tmp/baaa22490

and use ofile_save with nonunique file names will result in actions of this type:

Files with nonunique names will be tagged to enable
file_save:

Moving params.in to params.in.1

Moving results.out to results.out.1

DAKOTA File Data Formats

The central purpose of simulation interfaces is the mapping of a set of parameters into a set of
responses. DAKOTA uses its own format for this data input/output within interfaces which
employfile transferof data (i.e., the system call application interface). Depending on the user’s
interface specification, DAKOTA will write the parameters file in either standard or APREPRO
format. The latter option simplifies model parameterization using the APREPRO utility
([Sjaardema, G.D., 1992)). For the results file, only one format is supported.

Parameters file format (standard)

Prior to invoking an interface, DAKOTA creates a parameters file which contains the current
parameter values and a set of function requests. This parameters file has the following standard
format:

User’s Instructions Simulation Interfacing - The System Call Application Interface 85

<int> variables <int> functions Descriptive header

<double> <var_tag_cdv1>

<double> <var_tag_cdv2> Continuous design vars
(Ncgy Values and tags)
<double> <var_tag_cdvn>

<int> <var_tag_ddv1l>

<int> <var_tag_ddv2> Discrete design vars.

(ngqy Values and tags)

<int> <var_tag_ddvn>

<double> <var_tag_uvl>

<double> <var_tag_uv2> > Uncertain vars.

(nyy values and tags)
<double> <var_tag_uvn>

<double> <var_tag_csvl>

<double> <var_tag_csv2> Continuous state vars.

(ncsy Values and tags)
<double> <var_tag_csvn>

<int> <var_tag_dsv1>

<int> <var_tag_dsv2> Discrete state vars.
(ngsy Values and tags)
<int> <var_tag_dsvn>

<int> <asv_tag_1>

<int> <asv_tag_2> Active set vector

/ (m values and tags)

<int> <asv_tag_m>

Figure 20 Parameters file data format, standard option

where <int> ” denotes an integer valuesdouble> " denotes a double precision value, and

“ " indicates omitted lines for brevity. The first line specifies the total number of variafbjes (
with its identifier string “variables” followed by the number of functiomswith its identifier

string “functions.” These integers are useful for dynamic memory allocation within a simulator
or filter program. The next lines specify the current values and descriptors of all of the
variables within the parameter set in the following order: continuous design, discrete design,
uncertain, continuous state, and discrete state variables. The lengths of these vectors add to a
total ofn (that is,n¢g, +Nggy TNuy FNesy TNgsy =N). If any of the variable types are not present

in the problem, then its block is omitted entirely from the parameters file. The descriptors are
those specified in the user’'s Dakota input file, or if no descriptors have been specified, default
descriptors are used. The nenlines specify the request vector for each of thieinctions in the
response data set. These integer codes indicate what data is required on the current function
evaluation. Integer values of 0 through 7 denote a 3-bit binary representation of all possible

User’s Instructions Simulation Interfacing - The System Call Application Interface 86

combinations of value, gradient, and Hessian requests for a particular function, with the most
significant bit denoting the Hessian, the middle bit denoting the gradient, and the least significant
bit denoting the value. The specific translations are shown in Table 8.

Table 8 Request vector codes
Irgggir reprzlsnear:%/ation SLECTALY
7 111 Get Hessian, gradient, and value
6 110 Get Hessian and gradient
5 101 Get Hessian and value
4 100 Get Hessian
3 011 Get gradient and value
2 010 Get gradient
1 001 Get value
0 000 Get nothing, function is inactive

This request vector accomplishes two operations: (1) it manages the type of function data that is
needed, and (2) it implements the active set strategy by providing a mechanism for distinguishing
between active and inactive functions.

Parameters file format (APREPR

For the APREPRO format option, the same data is present and the same ordering is used as in the
standard format. The difference is that numerical values are associated with their tagb$within
{tag = value } constructs as shown in Figure 21.:

User’s Instructions Simulation Interfacing - The System Call Application Interface 87

$$ { DAKOTA_VARS = <int> }
$$ { DAKOTA_FNS = <int> }

$$ { <var_tag_cdvl> = <double>}
$$ { <var_tag_cdv2> = <double> }

Descriptive header

Continuous design vars.
(Ncgy Values and tags)
$$ { <var_tag_cdvn> = <double> }
$$ { <var_tag_ddvl> = <int>}

$$ { <var_tag_ddv2> = <int>} Discrete design vars.
(Nggy Values and tags)
$$ { <var_tag_ddvn> = <int>}
$$ { <var_tag_uvl> = <double>}

$$ { <var_tag_uv2> = <double>} Uncertain vars.

(nyy values and tags)
$$ { <var_tag_uvn> = <double> }

$$ { <var_tag_csvl> = <double> }
$$ { <var_tag_csv2> = <double> } Continuous state vars.

(ncsy Values and tags)
$$ { <var_tag_csvn> = <double> }

$$ { <var_tag_dsvl> = <int>}
$$ { <var_tag_dsv2> = <int>} Discrete state vars.

(ngsy Values and tags)

TNy Tyl

$$ { <var_tag_dsvn> = <int>}

$$ { ASV_1 = <int>} \

$$ {ASV_2 =<int>} Active set vector

/ (m values and tags)

$$ { ASV_M = <int> }

Figure 21 Parameters file data format, APREPRO option

When a parameters file in APREPRO format is included within a template file (using an include
directive), the APREPRO utility recognizes these constructs as variable definitions which can
then be used to populate targets throughout the template file.

Results file format

After completion of the interfacing processes, DAKOTA expects to read a file containing
response data for the current set of parameters and corresponding to the set of function requests.
This data must be in the following format:

User’s Instructions Simulation Interfacing - The System Call Application Interface 88

<double> <fn_tag_1> \

<double> <fn_tag_2> Requested function

values (optional tags)

;double> <fn_tag_m>
[<double> <double> ... <double>]
[<double> <double> ... <double>] Requested gradient

vectors (no tags)
[<double> <double> ... <double>]

[[<double> <double> ... <double>]]
[[<double> <double> ... <double>] Requested Hessian
matrices (no tags)

[[<double> <double> ... <double>]]

Figure 22 Results file data format

The first block of data is the function values that have been requested, followed by a block of
requested gradient data, followed by a block of requested Hessian data. Function data have no
bracket delimiters and 1 character tag per function captienally supplied. These tags are not

used by DAKOTA and are only included as an optional field for consistency with the parameters
file format and for backwards compatibility. The tags are rendered optional through DAKOTA's
use of regular expression pattern matching to detect whether an upcoming field is numerical data
or a tag. If character tags are used, then they must be separated from data by either white space
or new line characters and there must not be any white space within a character tag (e.g., use
“variable_1,” not “variable 1”).

Function gradient vectors are delimited with single bracketg b -vector of doubles...]. Tags

are not used and must not be present. White space separating the brackets from the data is
optional.

Function Hessian matrices are delimited with double brackets[L,4 > ng,q matrix of

doubles...]]. Tags are not used and must not be present. White space separating the brackets from
the data is optional, although white space must not appear between the double brackets.

DAKOTA will read the data in three passes, getting the set of requested function values first,
followed by the requested set of gradients, followed by the requested set of Hessians. If the
amount of data in the file does not match the function request vector, DAKOTA will abort with a
response recovery format error message.

An important question for proper management of both gradient and Hessian data is: if several
different types of variables are uséaf, which variables are function derivatives needed@Rat

is, how isng g determined? Derivatives are never needed with respect to any discrete variables
(since these derivatives do not exist) and the types of continuous variables for which derivatives
are needed depend on the type of study being performed. For optimization and least squares
problems, function derivatives are only needed with respect tmtitenuous design variables

(Ngrad =Ncav) since this is the information used by the optimizer in computing a search

User’s Instructions Simulation Interfacing - The System Call Application Interface 89

direction. Similarly, for nondeterministic analysis methods which use gradient and/or Hessian
information, function derivatives are only needed with respect tortbertain variables

(Ngrad =Nuy)- And lastly, parameter study methods which are cataloguing gradient and/or
Hessian information do not draw a distinction among continuous variables; therefore, function
derivatives must be supplied with respecalitacontinuous variablethat are specified

(Ngrad =Ncav *Nuy tNesy)- This is generally not as complicated as it sounds, since it is common
for optimization and least squares problems to only specify design variables and for
nondeterministic analysis problems to only specify uncertain variables. DAKOTA allows for the
specification of additional types of variables in these cases and DAKOTA will map these
additional variables through the interface, but since they will not be used in the internal
computations of the iterator, the derivatives of the function set with respect to the additional
variables are not needed.

Active set ector control

A future capability will be the option to turn the ASV contool or off (currently,

dakota.input.spec has a placeholder for this capability in the responses keyword section).
ASV control set tmn is the default operation as described previously, whereas ASV control set
to off will cause Dakota to always request a “full” data set (the full function, gradient, and
Hessian data that is available in the problem as specified in the responses specification) on each
function evaluation. This latter case will allow the user to simplify the supplied interface by
removing the need to check the content of the active set vector on each evaluation. Of course,
this will be most appropriate for those cases in which only a relatively small penalty in efficiency
occurs when returning more data than may be needed on a particular function evaluation. See
Active Set Vector Usage on page 143 in the Responses section of the Commands chapter for a
more detailed description.

Examples

Shown are several examples of parameters files and their corresponding results files.

A typical input file for 2 variablesn(= 2) and 3 functions{= 3) is as follows:
2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
1ASV_1
1ASV_2
1ASV_3
The number of design variableas) @nd the string “variables” are followed by the number of
functions (r) and the string “functions”, the values of the design variables and their tags, and the
active set vector (ASV) and its tags. The descriptive tags for the variables are always present and
they are either the descriptors specified in the user’s dakota input file or are default descriptors if
none were provided. The length of the active set vector is equal to the number of fungtions (
In the case of an optimization data set with an objective function and two nonlinear constraints
(three response functions total), the first ASV value is associated with the objective function and

User’s Instructions Simulation Interfacing - The System Call Application Interface 90

the remaining two are associated with the constraints (in whatever consistent order has been
defined by the user).

For the APREPRO format option, the same set of data appears as follows:

$$ { DAKOTA_VARS =2}
$$ { DAKOTA_FNS =3}

$${cdv_1 = 1.5000000000e+00 }
$$ { cdv_2 = 1.5000000000e+00 }
$${ASV 1 = 1}
$${ASV 2 = 1}
$${ASV 3 = 1}

where the numerical values are associated with their tags B#fitag = value }
constructs.

The user-supplied application interface, comprised of a simulator program and - optionally -

filter programs, is responsible for reading the parameters file and writing the results file
containing the response data requested in the ASV. Since the ASV contains all ones in this case,
the response file corresponding to the above input file would contain values for the three
functions:

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2

Since function tags are optional, the following would be equally acceptable:

1.2500000000e-01
1.5000000000e+00
1.7500000000e+00

For the same parameters with different ASV components,

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

3ASV_ 1

3ASV 2

3ASV_ 3

the following response data is required:

1.2500000000e-01 f

1.5000000000e+00 c1
1.7500000000e+00 c2

[5.0000000000e-01 5.0000000000e-01]

[3.0000000000e+00 -5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

Here, we need not only the function values, but also each of their gradients. Modifying the ASV
components again gives the following parameters file,

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
2ASV_1
0ASV 2

User’s Instructions Simulation Interfacing - The System Call Application Interface 91

2 ASV_3

for which the following results file is needed:

[5.0000000000e-01 5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

Here, we needed gradients for functibnandc2, but not forcl presumably since the
constraint is inactive.

A full Newton optimizer might well make the following request:

2 variables 1 functions

1.5000000000e+00 cdv_1

1.5000000000e+00 cdv_2
7ASV_1

for which the following results file (containing the objective function, its gradient vector, and its
Hessian matrix) is needed:

1.2500000000e-01 f

[5.0000000000e-01 5.0000000000e-01]

[[3.0000000000e+00 0.0000000000e+00 0.0000000000e+00
3.0000000000e+00]]

Lastly, a more advanced example might have multiple types of variables present:

11 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

2ddv_1

2ddv_2

2ddv_3
3.5000000000e+00 csv_1
3.5000000000e+00 csv_2
3.5000000000e+00 csv_3
3.5000000000e+00 csv_4

4dsv_1

4 dsv_2

3ASV_ 1

3 ASV 2

3ASV_ 3

In this case, the required length of the gradient vectors depends upon the type of study being
performed. In an optimization problem, gradients are only needed with respect to the continuous
design variables, in which case the following response data would be appropyigte-@):

1.2500000000e-01 f

1.5000000000e+00 c1

1.7500000000e+00 c2

[5.0000000000e-01 5.0000000000e-01]

[3.0000000000e+00 -5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

In a parameter study, however, no distinction is drawn between different types of continuous
variables and gradients would be needed with respect to all continuous vanghles6), e.g.:

1.2500000000e-01 f

User’s Instructions Simulation Interfacing - The System Call Application Interface 92

1.5000000000e+00 c1

1.7500000000e+00 c2

[5.0000000000e-01 5.0000000000e-01 6.2500000000e+01
6.2500000000e+01 6.2500000000e+01 6.2500000000e+01]

[3.0000000000e+00 -5.0000000000e-01 0.0000000000e+00
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00]

[0.0000000000e+00 3.0000000000e+00 0.0000000000e+00
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00]

Failure capturing

DAKOTA provides the capability to manage failures in simulation codes within both its system
call and direct application interfaces. Failure capturing consists of three operations: failure
detection, failure communication, and failure recovery.

Failure detection

Since the symptoms of a simulation failure are highly code-dependent, it is the user’s
responsibility to detect failures within theinalysis_driver oroutput_filter . One
popular example of simulation monitoring is to rely on a simulation’s internal detection of errors.
In this case, the Unigrep utility can be used within a user’s script to detect strings in output
files which indicate analysis failure. For example, the following script excerpt

grep ERROR analysis.out > /dev/null

if ($status ==0)

echo “FAIL” > results.out

endif
will pass thaf test and communicate simulation failure to DAKOTA if tvep command
finds the strindERRORanywhere in thanalysis.out file.

If the simulation code is not providing error diagnostic information, then failure detection may
require monitoring of simulation results for sanity (e.g., is the mesh distorting excessively?) or
potentially monitoring for continued process existence to detect a simulation segmentation fault
or core dump. While this can get complicated, the flexibility of DAKOTA's interfaces allows for

a wide variety of monitoring approaches.

Failure communication

Once a failure is detected, it must be communicated so that DAKOTA can attempt to recover
from the failure. The form of this communication depends on the type of application interface in
use.

User’s Instructions Simulation Interfacing - Failure capturing 93

System call application intextes

In the system call application interface case, a detected simulation failure is communicated to
DAKOTA through the results file returned by the usersalysis_driver (1-piece interface)

or output_filter (3-piece interface). Instead of returning the standard results file data, the
string “FAIL ” or “fail " should appear at the beginning of the results file. Any data appearing
after the fail string will not be read.

Direct application intedces

In the direct application interface case, a detected simulation failure is communicated to
DAKQOTA through the return code provided by the usanalysis_driver (for either the 1-
piece or the 3-piece interface). Recall that the prototype for the direct interfiaice is
function_name(const DakotaVariables& vars, const DakotalntArray&

asv, DakotaResponse& response) . Theint returned is the failure code: O (false) if no
failure occurs and 1 (true) if a failure occurs.

Failure recovery

Once the analysis failure has been communicated, DAKOTA will attempt to recover from the
failure using one of the following mechanisms, as governed by the user’s input specification.
Additional details on these specifications are provided in Interface Commands on page 127.

Abort

If the abort option is specified, then DAKOTA will terminate upon detecting a failure. Note
that if the problem causing the failure can be corrected, DAKOTA' restart capability (see Restart
Management on page 125) can be used to continue the study.

Retry

If theretry option is specified, then DAKOTA will reinvoke the failed simulation up to the
specified number of retries. If the simulation continues to fail on each of these retries, DAKOTA
will terminate. The retry option is appropriate for those cases in which simulation failures may
be resulting from transient computing environment issues, such as disk space.

Recover

If therecover option is specified, then DAKOTA will not attempt the failed simulation again.
Rather, it will return a “dummy” set of function values as the results of the function evaluation.
The dummy function values to be returned are specified by the user. Any gradient or Hessian
data requested in the active set vector will be zero. This option is appropriate for those cases in
which a failed simulation may indicate a region of the design space to be avoided and the dummy
values can be used to return a large objective function or a constraint violation which will
discourage an optimizer from further investigating the region.

User’s Instructions Simulation Interfacing - Failure capturing 94

Continuation

If the continuation option is specified, then DAKOTA will attempt to step towards the

failing “target” simulation from a nearby “source” simulation through the use of a continuation
algorithm. This option is appropriate for those cases in which a failed simulation may be caused
by an inadequate initial guess. If the “distance” between the source and target can be divided into
smaller steps in which information from one step provides an adequate initial guess for the next
step, then the continuation method can step towards the target in increments sufficiently small to
allow for convergence of the simulations.

When the failure occurs, the interval between the last successful evaluation (the source point) and
the current target point is halved and the evaluation is retried. This halving is repeated until a
successful evaluation occurs. The algorithm then marches towards the target point using the last
interval as a step size. If a failure occurs while marching forward, the interval will be halved
again. Each invocation of the continuation algorithm is allowed a total of ten failures (ten
halvings result in up to 1024 evaluations from source to target) prior to aborting the DAKOTA
process.

While DAKOTA manages the interval halving and function evaluation invocations, the user is
responsible for managing the initial guess for the simulation program. For example, in GOMA
([Schunk, P.R., Sackinger, P.A., Rao, R.R., Chen, K.S., Cairncross, R.A., 1995]), the user
specifies the files to be used for reading initial guess data and writing solution data. When using
the last successful evaluation in the continuation algorithm, the translation of initial guess data
can be accomplished by simply copying the solution data file leftover from the last evaluation to
the initial guess file for the current evaluation (and in fact this is useful for all evaluations, not
just continuation). However, techniques are under development for usectdgsst previously
successful, function evaluation (rather thanl#s¢successful evaluation) as the source point in

the continuation algorithm. This will be especially important for nonlocal methods (e.g., genetic
algorithms) in which the last successful evaluation may not necessarily be in the vicinity of the
current evaluation. This approach will require the user to save and manipulate previous solutions
(likely tagged with evaluation number) so that the results from a particular simulation (specified
by DAKOTA after internal identification of the closest point) can be used as the current
simulation’s initial guess.

The Approximation Interface

The Approximationinterface branch (see Figure 18) implements a variety of approximation
techniques which can be used as surrogates in place of actual simulatioABIN;HRSM, and

MARS approximation interfaces implement artificial neural networks, response surface methods,
and multivariate adaptive regression splines, respectively. In additibfPArapproximation

interface is planned for implementing multipoint approximations. These approximations can be
used on their own for direct interfacing with any iterator or as part of a sequential approximation
strategy (see Sequential Approximate Optimization on page 74).

User’s Instructions Simulation Interfacing - The Approximation Interface 95

The primary goal in surrogate-based optimization is the reduction of computational expense
through the minimization of the number of function evaluations that need to be performed with
the actual expensive model.

All of the approximation interfaces define methods for building an initial approximation (the
build_approximation virtual function), updating the approximation with new data points
(theupdate_approximation virtual function), modifying the form or extent of the
approximation (thenodify_approximation virtual function), and performing a function
evaluation using the approximation (ttmep virtual function).

Building an approximation

Building an initial approximation consists of selecting a set of trial points, performing the trial
function evaluations on the actual model, and then using the results of the trial function
evaluations to solve for the coefficients (e.g., polynomial coefficients, neural network weights) of
the approximation. If there are multiple functions in the response set (e.g., an objective function
plus one or more constraints), then a separate approximation is built for each function, although

each approximation uses the response data from the same trial points. Currentf{),-amulgro
information (function values) from the actual model is used in building the approximation,
although extensions to using higher-order information (function gradients and Hessians) are
possible. In DAKOTA, the set of trial points is determined via the DDACE package ([Tong, C.H.,
and Meza, J.C., 1997]) for design and analysis of computer experiments. Solution for the
approximation coefficients is performed using either LU factorization or singular value
decomposition.

Updating an approximation

An approximation can be updated whenever new information is available from the actual model.
In sequential approximate optimization, for example, the best point found in an approximate
optimization cycle is evaluated with the actual model. This new information is first used to assess
performance and convergence of the process. If improvement is observed and the convergence
criteria have not been satisfied, then the new function evaluation information is used to update
the approximation for the next approximate cycle. This will typically involve another
factorization or decomposition to solve for new approximation coefficients.

Modifying an approximation

It is often desirable to modify the extent of an approximation based on its performance. For
example, if the approximation is performing poorly (as measured by the evaluation of the best
point found in an approximate optimization cycle with the actual model), then it is desirable to
restrict the extent (i.e., the bounds) of the approximation. Conversely, if the approximation is
performing well, then it may be desirable to increase the extent of the approximation so that

User’s Instructions Simulation Interfacing - The Approximation Interface 96

larger changes can occur on each cycle. DAKOTA is implementing trust region concepts to
manage the extent of approximations.

Performing function evaluations

Each of the approximation interfaces, like the application interfaces, must implement the virtual
map function in order to provide a mechanism for parameter to response mapping. This is the
function invoked when an iterator requests a function evaluation. Since the function evaluation
mechanisms for application and approximation interfaces are implemented within a single virtual
function, the particular form of the interface can be hidden from the iterator and this complexity
can be encapsulated.

In the case of an approximation interface, a parameter to response mapping involves an
inexpensive evaluation of the approximation for a particular parameter set. All of the
approximations can returd@order information (approximate function values) and some

approximations can directly returfi-brder information (approximate function gradients) in
those cases where the approximate form is easily differentiated (e.g., a quadratic polynomial
approximation). Availability of analytic gradients can improve the accuracy and efficiency of
performing a gradient-based optimization on the approximation.

The RSM Approximation Interface

The RSM Approximation Interface uses a response surface method which assumes a quadratic
polynomial of the form:

n n n
C0+_Z C, X; + Z Z Cij Xj X| 7)

i =1 i =1j =1

Following evaluation of the DDACE sample points with the actual model, the RSM
approximation coefficientsg, ¢; , cj;) are computed with an LU factorization.

This capability is new and evolving. Additional details will be provided in future documentation
releases.

The MARS Approximation Interface

The MARS Approximation Interface uses multivariate adaptive regression splines from the
MARS3.5 package ([Friedman, J. H., 1991]) developed at Stanford University. An object-
oriented interface to the Fortran library is provided by the DDACE package ([Tong, C.H., and
Meza, J.C., 1997]).

User’s Instructions Simulation Interfacing - The RSM Approximation Interface 97

This capability is new and evolving. Additional details will be provided in future documentation
releases.

The ANN Approximation Interface

The ANN Approximation Interface uses a layered perceptron artificial neural network based on
the direct training approach of Zimmerman ([Zimmerman, D.C., 1996]). Following evaluation of
the DDACE sample points with the actual model, the ANN weights are computed with an SVD
decomposition.

This capability is new and evolving. Additional details will be provided in future documentation
releases.

User’s Instructions Simulation Interfacing - The ANN Approximation Interface 98

Exploiting Parallelism

L —

Parallelism Introduction

The opportunities for exploiting parallelism in optimization can be categorized into four main
areas:

1.

Algorithmic coarse-grained parallelisnThis parallelism involves the exploitation of

multiple independent function evaluations. Examples of optimization algorithms containing
coarse-grained parallelism include:

a.) Gradient-based algorithmdinite difference gradient evaluations, speculative
optimization, parallel line search, multiple-secant BFGS.

b.) Nongradient-based algorithmgenetic algorithms (GAs), coordinate pattern search
(CPS), parallel direct search (PDS), Monte Carlo.

c.) Approximate methodstesign and analysis of computer experiments (DACE) evaluations
for building response surfaces and training neural networks.

d.) Multi-method strategiesoptimization under uncertainty, branch and bound, multi-start
local search, island-model GA's, GA's with periodic local search.

Algorithmic fine-grained parallelisnmifhis involves computing the basic computational steps
of an optimization algorithm (i.e., the internal linear algebra) in parallel. This is primarily of
interest in large-scale optimization problems and simultaneous analysis and design (SAND).

Function evaluation coarse-grained parallelisiithis involves simultaneous computation of
separable (i.e., uncoupled) parts of a single function evaluation, where a function evaluation
may contain multiple response functions requiring multiple simulations. Examples include
separate simulations for multiple objectives and constraint functions, multiple disciplinary
analyses for MDO, etc.

Function evaluation fine-grained parallelisfhis involves parallelization of the solution
steps within a single analysis code. Examples of Sandia-developed MP analysis codes
include PRONTO3D, COYOTE, MPSalsa, ALEGRA, PCTH, SIERRA, etc.

In both the algorithmic and function evaluation cases, coarse-grained parallelization requires
very little inter-processor communication and is therefore essentially “free,” meaning that there is
little loss in parallel efficiency due to communication as the number of processors increases
(assuming that there are enough separable computations to utilize the additional processors).
Fine-grained parallelism, on the other hand, involves much more communication among
processors and care must be taken to avoid the case of inefficient machine utilization in which
the communication demands among processors outstrip the amount of actual computational work
to be performed.

Single-level approaches which exploit either algorithmic coarse-grained parallelism or function
evaluation fine-grained parallelism have been investigated in previous work ([Eldred, M.S., Hart,

User’s Instructions Exploiting Parallelism - Parallelism Introduction 99

W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G., 1996]). It has been
shown that optimization approaches which utilize single-level parallelism can have clear
performance barriers. Parallel optimization of single-processor simulations is limited by the
number of independent evaluations per cycle, and sequential optimization of parallel analyses is
limited by the practical limit on processors that can be used for a single parallel simulation
before inter-process communication dominates actual computational work. These observations
point clearly to the need for multilevel parallelism, in which parallel optimization strategies
coordinate multiple simultaneous simulations of multiprocessor codes.

The question arises, then, if multiple types of parallelism can be exploited, how should the
amount of parallelism at each level be selected so as to maximize the parallel efficiency of the
study? This question is answered in [Eldred, M.S., and Hart, W.E., 1998] in which it is shown

that maximum parallel efficiency is achieved in multilevel parallelism when the minimum

number of processors is used for the fine-grained parallelism of a given parallel analysis (with

the rare exception of a parallel analysis with superlinear speedup). This gives preference to the
coarse-grained parallelism in multilevel parallel studies. However, maximum efficiency and
minimum turn-around time are not equivalent, and in practice, it is common to sacrifice

efficiency for speed and increase the number of processors used for a given parallel analysis
beyond the minimum required. For example, if an algorithm has 10 independent function
evaluations per cycle and each of these function evaluations needs a minimum of 50 processors
to perform the simulation, then high parallel efficiency can be achieved by dividing a total of 501
processors into ten 50-processor slave servers plus a master processor. This would be preferable
to five 100-processor slave servers and far preferable to one 500-processor slave server. However,
increasing to a total of 1001 processors and selecting 10 100-processor slave servers, while not
having as high a parallel efficiency, might be desirable in practice in order to minimize turn-
around time.

The following discussions describe how to manage algorithmic coarse-grained parallelism and
function evaluation fine-grained parallelism within the DAKOTA framework. The remaining

types (algorithmic fine-grained and function evaluation coarse-grained parallelism) are not
currently supported, although [Eldred, M.S., and Schimel, B.D., 1999] describes recent progress
in these directions. The software components which enable parallelism are discussed first,
followed by descriptions of approaches for utilizing these components in implementing
parallelism within a variety of scenarios. Finally, input specification and execution details are
provided for running parallel DAKOTA studies.

Enabling Software Components

This section describes software components which enable parallelism in a variety of forms.
Direct function and system call interfacing capabilities have the flexibility to initiate function
evaluations either synchronously or asynchronously. Synchronous evaluations proceed one at a
time with the evaluation running to completion before control is returned to DAKOTA.
Asynchronous evaluations are initiated such that control is returned to DAKOTA immediately,

User’s Instructions Exploiting Parallelism - Enabling Software Components 100

prior to evaluation completion, thereby allowing the initiation of multiple concurrent evaluations.
The synchronization capabilities can be used by themselves to provide a simple parallelism
which relies on external means to assign jobs to processors (see Single-processor DAKOTA
implementation on page 105), or they can be combined with DAKOTA's master-slave algorithm
to provide a sophisticated self-contained parallelism (see Multiprocessor DAKOTA
implementation on page 106).

Direct function synchronization

The direct function capability, described in detail in The Direct Function Application Interface
on page 80, is used to invoke simulation codes which are linked directly into the DAKOTA
executable or to invoke internal test functions for algorithm performance testing. This capability
may be used synchronously or asynchronously:

Svynchronous

Synchronous operation of the direct function application interface involves a standard procedure
call to a simulation linked within the code. Control does not return to the calling code until the
simulation is completed and the response object has been populated.

Asynchronous

Asynchronous operation involves the use of multithreading (e.g., POSIX threads) to accomplish
multiple simultaneous simulations. When spawning a thread, control returns to the calling code
after the simulation is initiated. In this way, multiple threads can be created simultaneously. An
array of responses corresponding to the multiple threads of execution is recovered in a
synchronize operation.

System call synchronization

The system call approach, described in detail in The System Call Application Interface on page
81, invokes a simulation code or simulation driver by usingylseem function from the C

standard library to create a new process. This capability may be used synchronously or
asynchronously:

Synchronous

Synchronous operation of the system call application interface involves spawning the system call
in the foreground. Control does not return to the calling code until the simulation is completed
and the response file has been written. In this case, the possibility of a race condition (see below)
does not exist and any errors during response recovery will cause an immediate abort of the
DAKOTA process.

User’s Instructions Exploiting Parallelism - Enabling Software Components 101

Asynchronous

Asynchronous operation involves spawning the system call in the background, continuing with
other tasks (e.g., other simulation system calls), periodically checking for process completion,
and finally retrieving the results. An array of responses corresponding to the multiple system
calls is recovered in a synchronize operation.

In this synchronize operation, completion of a function evaluation is detected by testing for the
existence of the evaluation’s results file usingdfa¢ utility (see [Kernighan, B.W., and

Ritchie, D.M., 1988]). Care must be taken when using this facility since it is prone to the race
condition in which the results file passes the existence test but the recording of the function
evaluation results in the file is incomplete. In this case, the read operation performed by
DAKOTA will result in an error due to this incomplete data set. In order to address this problem,
DAKOTA contains exception handling which allows for a fixed number of response read failures
per asynchronous system call evaluation. The number of allowed failures must have a limit, so
that an actual response format error (unrelated to the race condition) will eventually abort the
system. Therefore, to reduce the possibility of exceeding the limit on allowable read ftikires,
user’s interface should minimize the amount of time an incomplete results file exists in the
directory where its status is being testddhis can be accomplished through two approaches: (1)
delay the creation of the results file until the simulation computations are complete and all of the
response data is ready to be written to the results file, or (2) perform the simulation computations
in a subdirectory, and as a last step, move the completed results file into the main working
directory where its existence is being queried.

If concurrent simulations are executing in a shared disk space, then care must be taken to
maintain independence of the concurrent analyses. In particular, the parameters and results files
for a simulation, as well as any other files used by the simulation, must be protected from other
files of the same name used by other concurrent simulations. With respect to the parameters and
results files, these files may be made unique through the use of file tagging or Unix temporary
files (see Additional Features on page 82). However, if additional simulation files must be
protected, then it will usually be necessary to create a working subdirectory for each concurrent
simulation. For example, if the only files used by a simulator are the files from which it reads
parameters and to which it writes results (e.g., the simple test problems in Example Problems on
page 328), then it is sufficient to use eitherfilee tag option params.in.1

results.out.1 , etc.) or the default Unix temporary file optidwaf/tmp/aaaOb2Mfv ,

etc.) to maintain independence between concurrent simulations. If, however, a simulator needs to
use additional files for input, run diagnostics, and results databasem(&gl,i , model.o ,

model.g , model.e , etc., for many SEACAS codes), then one could extract DAKOTA's

number designators and use them to tag all the other files (assuming the simulator can handle
modified filenames), or preferably, create a tagged working directory in which the simulator can
execute in default mode. An example of this preferred approach is given in Figure 9 in the
Tutorial on page 19.

User’s Instructions Exploiting Parallelism - Enabling Software Components 102

Master-slave algorithm

DAKOTA contains a master-slave algorithm which self-schedules function evaluations in a

“single program-multiple data” (SPMD) parallel programming model. It uses MPI message-
passing ([Gropp, W., Lusk, E., and Skjellum, A., 1994], [Snir, M., Otto, S., Huss-Lederman, S.,
Walker, D., and Dongarra, J., 1996]) to communicate data between processors. The self-
scheduling design (also known as a task pool design) provides a simple load balancing which is
particularly useful in the case of heterogeneous processor speeds or varying simulation durations.
In the first pass, the self-scheduling algorithm assigns each slave server a job. In the second pass,
the master schedules the remaining jobs on slave servers as they complete their previous jobs; the
first server to return its results gets the next job. The SPMD designation simply denotes that the
same DAKOTA executable is loaded on all processors. This differs from the MPMD model
(“multiple program-multiple data”) which would have the DAKOTA executable on the master
processor communicating directly with simulator executables on slave processors. The MPMD
model has some advantages, but it is not currently allowable by the executable loading software
(i.e.,yod) on Sandia’s MP machines.

Developer’s notedmplementing the master-slave model within a single executable (SPMD model) entails a division

of iterator code (master) from function evaluation code (slave). This is accomplished within DAKOTA at the strategy
layer. In the strategy constructor, the master processor instantiates the required iterators and models whereas the slave
processors instantiate only the required models. When the strategy is executed, the master executes the current
iterator and sends analysis requests to the slaves which run server code bound to the current model. When the master
completes iteration on the current model, it sends a termination message to the slaves which then exit the current
model. If additional work remains within the strategy, then the process repeats for the next iterator and model.
Additional features include: (1) the use of buffer packing which allows for send/receive of a heterogeneous set of data
within a single message and thereby minimizes message traffic, and (2) Warafedlibrary class hierarchy

which encapsulates the specific syntax of message passing operations for particular message passing libraries.

Single-level parallelism

DAKOTA uses MPI communicators to identify groups of processors. In the single-level parallel
case employing many single-processor slave servers, the global MPI communicator
(MP1_COMM_WORY) €an directly provide the context needed for master-slave communication
since processor rank withMPl_COMM_WORIibsufficient for message source and destination
information. The other single-level parallel case of employing one multi-processor slave server is
treated identically to the multilevel parallel case described below.

Multilevel parallelism

For multilevel parallelismMPI_COMM_WORIBN be partitioned into new intra-communicators
which delineate the set of processors to be used for each multiprocessor analysis. Since these
intra-communicators can be passed into a simulation for use as the simulation’s computational
context, the use of communicators enables the analysis routines to be provided as a generic
library utility that can be run on an arbitrary set of processors (which was one of the goals of the
MPI standard). Within DAKOTA, new intra-communicators are created with the
MPI_Comm_split routine. In order for the master to send messages to the new intra-
communicators, inter-communicators are created with calto Intercomm_create

User’s Instructions Exploiting Parallelism - Enabling Software Components 103

Once the new communicators are created, the single-level and multilevel algorithms for
scheduling jobs from the master are virtually identical (in fact, the single-level case could be
handled as a special case of the multilevel case, but the DAKOTA design opted to maintain
separate logic and avoid the overhead of additional communicator creations for the single-level
case). In addition, communicator partitions can be reallocated multiple times. This enables
dynamic repartitioning dviPl_COMM_WORIf&r each simulation interface within a strategy

that manages multiple models (e.g., four 256 processor servers could be used for a coarse model
followed by two 512 processor servers for subsequent iteration on a fine model). This is
conveniently managed by allocating and deallocating particular communicator partitioning
schemes within the iterator/model loops of the strategy layer.

Pending Extensions

Recent work has focused on the development of concurrent-iterator strategies and concurrent-
analysis function evaluations (refer to [Eldred, M.S., and Schimel, B.D., 1999]) for exploiting
additional coarse-grained parallelism within optimization studies. These extensions result in a
total of three nested tiers of master-slave control and four levels of parallelism which can
minimize efficiency losses and achieve near linear scaling on massively parallel computers.
These capabilities will be available in the DAKOTA V1.2 release and will allow the convenient
selection and combination of each type of parallelism a particular application supports:

» Concurrent iterators within a strategy

» Concurrent function evaluations within an iterator
» Concurrent analyses within a function evaluation
* Multiprocessor analyses

Implementation of Parallelism

This section describes how the software components which enable parallelism can be configured
to perform particular parallel studies. An essential feature for enabling a variety of parallel
processing scenarios is the independence of the Master-slave algorithm on page 103 from the
interfacing software described in Direct function synchronization on page 101 and System call
synchronization on page 101. Since they are independent, the master-slave code can utilize any
of the available interfacing capabilities, or alternatively, any of the available interfacing
capabilities can be employed with or without the master-slave approach.

The approaches to exploiting parallelism which this flexibility allows can be categorized into two
main areas: those in which DAKOTA runs on a single processor and relies on external means to
distribute simulations to remote processors (the master-slave approathssd), and those in
which DAKOTA runs in parallel coordinating simulations within its allocation of processors (the
master-slave approachused).

User’s Instructions Exploiting Parallelism - Implementation of Parallelism 104

Single-processor DAKOTA implementation

The asynchronous mappings described in Direct function synchronization on page 101 and
System call synchronization on page 101 can be used to accomplish coarse-grained parallelism
even when the DAKOTA process is running on a single processor. In this case, the master-slave
algorithm is not used and jobs are not assigned with MPI message-passing. Therefore, some
additional mechanism external to DAKOTA will usually be desired to distribute the

asynchronous jobs among processors, since multitasking on a single processor is generally
slower than running the jobs sequentially. For the asynchronous system call case, network load
leveling software (e.g., load leveler, load sharing facility, or other native scheduling software) or
compute server job queues can provide this mechanism, and in the asynchronous direct function
case, thread schedulers can be used (e.g., to select nodes within an SMP architecture).

To accomplish multilevel parallelism in this context, one could use DAKOTA's asynchronous
system call interface to submit multiple multiprocessor jobs to the queues of a parallel compute
server. Unfortunately, loading the queues with multiple jobs is generally forbidden in the usage
rules of Sandia’s MP machines. Moreover, each set of concurrent jobs will suffer a delay while it
percolates through the queue, such that an optimization performing evaluations in this way
suffers repeated queue delays on each cycle (as opposed to a single queue delay in other
approaches). Nevertheless, if specialized queues which allow multiple jobs per user and which
minimize repeated delays can be created and balanced with competing concerns, then this
approach can be a viable avenue to multilevel parallelism.

An alternative approach is to allocate a large number of compute processors to a single script
which runs on a service node and manages concurrent multiprocessor jobs on partitions of the
total allocation. This is in fact mimicking the communicator partitioning capabilities of MPI

within sophisticated scripting. While this has the advantages of simplifying the automation of
pre- and post-processing (since service nodes run full Unix) and minimizing analysis code
modifications (since the analysis does not have to be modified to a callable subroutine), it has the
disadvantages that (1) this is highly specific to the job submission software of a particular
parallel machine and is therefore not particularly flexible or extensible, and (2) DAKOTA is
disconnected from its function evaluations. This disconnection is due to the fact that DAKOTA
and the server script are launched separately, and information normally passed to the simulations
by DAKOTA during simulation invocation (e.g., where to obtain the parameters and where to
write the results) must be mimicked by the server script. DAKOTA'S only communication with

the simulations in this case comes through the creation of parameters files and the capture of
completed results files. While this procedure has been successfully demonstrated for a single
multiprocessor simulation, concurrent multiprocessor simulations will have the additional
complication that the server script must correctly track the evaluation numbers (which are not a
simple increasing sequence is the presence of duplicated analyses) in order to associate the
proper tagged files from DAKOTA with the analyses it launches.

The final option for multilevel parallelism is to use the multiprocessor DAKOTA implementation
(described in the following section) and manage multiprocessor function evaluations internally.
While elegant and general-purpose, it also has disadvantages in required modification to analysis

User’s Instructions Exploiting Parallelism - Implementation of Parallelism 105

codes. Each of these three options is currently under investigation, and it is expected that future
releases of the software documentation will be able to recommend the most fruitful of these
approaches.

Multiprocessor DAKOTA implementation

When executing DAKOTA in multiprocessor mode using the Master-slave algorithm on page
103, the synchronous and asynchronous operations of the direct function and system call
simulation interfacing classes are issues that are local to a processor. Layered on top of these
local interfacing capabilities is the software which manages message passing for assignment of
work among processors. This design allows flexibility in handling local evaluation mechanisms
independently from the particular form of the global message passing model. For example,
within the global context of a master-slave approach in which the maasgymishronously

assigning jobs and retrieving results using message passing with slave servers, the slave servers
locally execute their simulations using tachronouslirect function or system call protocols.

This is due to the fact that, since the master-slave algorithm is managing the parallelism and
scheduling one job at a time to a server, there is nothing to be gained in performing the job
asynchronously on the server. However, if new approaches or architectures become available
which can exploit additional parallelism at the slave server level (e.g., message-passing across
multiple SMP’s with multiple asynchronous jobs on each SMP), then the asynchronous direct
function and system call capabilities could be employed to realize this additional parallelism.

In the single-level parallel case of single-processor analyses, either the system call or direct
function interfacing approaches can be used. The system call case is particularly popular on
clusters of workstations since the analysis can be used in unmodified form and the user can
employ a simple driver script to coordinate any combination of pre- and post-processing tools
associated with an analysis. Applications can be configured quickly and easily in this way.

For multiprocessor analyses, the system call interfacing approach cannot be used since it is not
possible to share an MPI communicator (which provides the computational context for the
multiprocessor analysis) between processes spawned with system calls on different processors.
Therefore, the direct function interfacing approach must be used whenever employing
multiprocessor analyses within multiprocessor DAKOTA (in this case, an MPI communicator
can be passed in through the procedure call for all processors within a slave server - see
Multilevel parallelism on page 103 for additional MPI details). The main ramification of the
restriction to the direct function interface is the requirement to modify the analysis into a callable
subroutine and link it into the executable (see The Direct Function Application Interface on page
80). However,it may be feasible to remove this restriction in the future through use of MPMD
(“Multiple Program, Multiple Data”) executable loading or dynamic process creation with the
emerging MPI-2 standard (see [Eldred, M.S., and Hart, W.E., 1998] for additional details).

User’s Instructions Exploiting Parallelism - Implementation of Parallelism 106

Specifying Parallelism

In specifying parallelism with DAKOTA, the “model” encompasses the parallelism that is
supported in the problem (in particular, the interface specification specifies the available
parallelism). Then, depending on the “iterator” selected, the available parallelism (i.e., multiple
processors, asynchronous interfaces) will be automatically exploited in particular ways. This
design is known aisnplicit parallelism, in that the use of parallelism by an iterator is implicit:

the methods recognize the available parallelism and exploit it without need for specification of
special parallelized methods.

The Model
Specifying parallelism within a model can involve the use ofymchronous
evaluation_servers , andprocessors_per_evaluation keywords described in

Interface Commands on page 127.

When using DAKOTA on a single-processor and relying on external means to allocate jobs to
processors (see Single-processor DAKOTA implementation on page 10&3ytiedronous
interface specification is all that is required to specify the availability of asynchronous system
calls or asynchronous direct invocations within a model.

When executing DAKOTA across multiple processors and managing job allocation internally
(see Multiprocessor DAKOTA implementation on page 106), DAKOTA automatically detects the
presence of multiple processors and will, by defasignchronouslgchedule jobs among slave
processors while executing the jobs on the slave processorsaysingronousnvocations. If the
function evaluations are to be performed on multiple processors (multilevel parallelism), then
evaluation_servers or processors_per_evaluation must be specified to define

how the total processor allocation will be partitioned into function evaluation servers for a
particular simulation interface.

Note: asynchronous execution on the slave processors may be supported in the future for SMP clusters and will be
triggered by th@synchronous interface specification. However, using this specification in multiprocessor mode
is not supported in the current release.

The Iterator

As mentioned previously, iterators automatically detect the parallelism available in a model and
exploit it as appropriate within the iteration. Currently, the iterators which can exploit available
parallelism are:

* SGOPT optimizers - the genetic algorithm, coordinate pattern search, Solis-Wets, and
stratified Monte Carlo methods within SGOPT.

« Parameter studies - DAKOTAsector ,list ,centered , andmultidim parameter
studies.

User’s Instructions Exploiting Parallelism - Specifying Parallelism 107

» Gradient-based optimizers - NPSOL, DOT, and OPT++ can all exploit parallelism through the
use of DAKOTA's native finite differencing routine (selected witbthod source
dakota in the responses specification) which will perform concurrent evaluations whenever
the model supports them.

» Speculative optimization - NPSOL, DOT, and OPT++ can speculate that the gradient
information associated with a given line search point will be used later and compute the
gradient information, either by finite difference or analytically, in parallel at the same time as
the function values. This option is selected withgpeculative keyword in the method
specification and is used to balance the total amount of computation to be performed at each
design point (allowing efficient utilization of multiple processors).

Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job (which exploits parallelism through asynchronous
calls to external job schedulers) requires inclusioasghchronous in the interface
specification. For example, the following specification runs an NPSOL optimization which will
perform asynchronous finite differencing:

interface, \
application system, \
asynchronous \
analysis_driver= 'qsub_script’

variables, \
continuous_design =5 \
cdv_initial_point 0.2 0.050.08 0.2 0.2\
cdv_lower _bounds 0.150.020.050.1 0.1\
cdv_upper_bounds 1.0 1.0 1.0 1.0 1.0\
cdv_descriptor X1 'x2' '3’ 'x4’ 'x5’

responses, \
num_objective_functions =1 \
num_nonlinear_constraints = 2 \
numerical_gradients \
interval_type central \
method_source dakota \
fd_step_size = 1.0E-4 \
no_hessians

method, \
npsol_sqp

Note thatmethod_source dakota is needed to invoke DAKOTA's internal finite
differencing routine in order to exploit the parallelism. In this case, 11 function evaluations (one
at the current point plus two deltas in each of five variables) can be performed simultaneously for
each NPSOL response request. These 11 evaluations will be launched with system calls in the
background and presumably assigned to additional processors through submission to a queue or
similar approach.

User’s Instructions Exploiting Parallelism - Specifying Parallelism 108

Multiprocessor DAKOTA specification

Since the presence of multiple processors within the MPI context is detected automatically
(whenever DAKOTA is launched in parallel withpirun oryod), there is little to specify for
the multiprocessor DAKOTA case. To run the same NPSOL example using the master-slave
approachasynchronous would be removed from the interface specification (since the slave
servers execute their evaluations synchronously as described in Multiprocessor DAKOTA
implementation on page 106):
interface, \
application system, \
analysis_driver= 'qsub_script’
This will result in concurrent execution of single-processor evaluations managed by the self-
scheduling master-slave algorithm.

If multilevel parallelism is being used, themaluation_servers or

processors_per_evaluation must additionally be specified to determine the processor
partitioning to be used for a particular interface. In a more advanced example, a hybrid strategy
which employs multilevel parallelism and which reconfigures the processor partitioning for
varying model fidelity can be specified as follows:

strategy, \
multi_level uncoupled \
method_list = 'VPS’, 'NLP’
variables, \
continuous_design =4 \
cdv_initial_point 1.01.01.01.0
method, \
vector_parameter_study \
id_method = 'VPS’ \
step_vector=-.1-1-1-.1 \
num_steps = 20 \
interface_pointer = 'COARSE’ \
responses_pointer = 'NO_GRAD’
interface, \
application direct, \
id_interface = '"COARSE’ \
analysis_driver =’siml’ \
processors_per_evaluation = 5
responses, \
id_responses = 'NO_GRAD’ \
num_objective_functions = 1 \
num_nonlinear_constraints = 2 \
no_gradients \
no_hessians
method, \
npsol_sqp \

User’s Instructions Exploiting Parallelism - Specifying Parallelism 109

id_method = 'NLP’ \
interface_pointer = 'FINE’ \
responses_pointer = 'FD_GRAD’

interface, \
application direct, \
id_interface = 'FINE’ \
analysis_driver = 'sim2’ \
processors_per_evaluation = 10

responses, \
id_responses = 'FD_GRAD’ \
num_objective_functions =1 \
num_nonlinear_constraints = 2 \
numerical_gradients \
interval_type central \
method_source dakota \
fd_step_size = 1.0E-4 \
no_hessians

If DAKOTA is executed on 40 processors (usingirun oryod), then the study will first run a
parameter study using a coarse model in which evaluations are scheduled through 8 servers of 5
processors each. The study will then pass the best parameter set to NPSOL which will perform
parallel finite differencing (as in the previous examples) on a fine model using 4 servers of 10
processors each. Note that, for the multilevel parallel casdirte application interface

must be used for both interfaces (see Multiprocessor DAKOTA implementation on page 106).

Running a parallel DAKOTA job

Single-processor DAKOTA execution

Running a single-processor DAKOTA job (which exploits parallelism through asynchronous
calls to external job schedulers) is identical to the procedure described in Running DAKOTA on
page 123, e.g.:

dakota -i dakota.in > dakota.out

Multiprocessor DAKOTA execution

Running a multiprocessor DAKOTA job (which internally exploits parallelism) requires the use
of an executable loading facility suchrapirun oryod .

On clusters of workstations, thepirun script is used to initiate a parallel DAKOTA job, e.g.:

mpirun -np 12 dakota -i dakota.in > dakota.out
mpirun -machinefile machines -np 12 dakota -i dakota.in >
dakota.out

User’s Instructions Exploiting Parallelism - Running a parallel DAKOTA job 110

where both examples specify the use of 12 processors, the former selecting them from a default
system resources file and the latter specifying particular machines in a machine file (see [Gropp,
W., and Lusk, E., 1996] for details).

On a massively parallel computer such as the TeraFLOPS machine, similar facilities are available
from the Cougar operating system:
yod -sz 501 dakota -i dakota.in > dakota.out

In both thempirun andyod cases, MPI command line arguments are used by MPI (extracted in
the call toMPI1_Init) and DAKOTA command line arguments are used by DAKOTA (extracted
by DAKOTA's command line handler).

Caveats

MPI extracts its command line arguments first which can be problematic since certain file path
specifications (e.g.,./fsome_filename ") have been observed to cause problems, both for
multiprocessor executions withpirun and for single-processor executions of an executable
configured with MPI (sinc®PI_Init is still called in this case). These path problems can be
most easily resolved by using local linkage (all files or softlinks to the files appear in the same
directory), which will likely be automated within a run script in a future software release.

User’s Instructions Exploiting Parallelism - Running a parallel DAKOTA job 111

Commands Introduction

Overview

In the DAKOTA system, atrategygoverns how eacamethodmapsvariablesinto responses

through the use of anterface Each of these five piecestrategy method variables responses
andinterface are separate specifications in the user’s input file, and as a whole, determine the
study to be performed during an execution of the DAKOTA software. The number of strategies
which can be invoked during a DAKOTA execution is limited to one. This strategy, however,

may invoke multiple methods. Furthermore, each method may (in general) have its own “model,”
consisting of its own set of variables, its own set of responses, and its own interface. Thus, there
may be multiple specifications of theethod variables responsesandinterfacesections.

The syntax of DAKOTA specification is governed by the Input Deck Reader (IDR) parsing
system [Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 1996], which uses the
dakota.input.spec file to describe the allowable inputs to the system. This input
specification file provides a template of the allowable system inputs from which a particular
input file (referred to herein adakota.in file) can be derived.

IDR Input Specification File

DAKOTA input is governed by the IDR input specification file. This file

(dakota.input.spec) is used in the generation of parsing system files which are compiled
into the DAKOTA executable. Therefor@akota.input.spec is thedefinitive sourcédor

input syntax, capability options, and optional and required capability sub-parameters. Beginning
users may find this file more confusing than helpful and, in this case, adaptation of example input
files to a particular problem may be a more effective approach. However, advanced users can
master all of the various input specification possibilities once the structure of the input
specification file is understood. Key features include:

1. In the input specification, required parameters are enclosed in {}'s, optional parameters are
enclosed in []'s, required groups are enclosed in ()'s, optional groups are enclosed in []'s, and
either-or relationships are denoted by the | symbol. These symbols only appear in
dakota.input.spec ; they must not appear in actual user input files.

2. Keyword specifications (i.e., strategy, method, variables, interface, and responses) are
delimited by newline characters. Therefore, to continue a keyword specification onto multiple
lines, the back-slash character (“\") is needed to escape the newline. These newline escapes
appear both in the input specification and in user input files.

3. Each of the five keyword specifications begins with a
<KEYWORD = name>, <FUNCTION = handler_name>

User’s Instructions Commands Introduction - Overview 112

header which names the keyword and provides the binding to the keyword handler within
DAKOTA's problem description database. In an actual input file, only the name of the
keyword appears (e.guariables).

4. Some of the specifications within a keyword indicate that the user must stuppiEGER>,
<REAL> <STRING>o0or<LISTof><INTEGER> , <LISTof><REAL> ,
<LISTof><STRING> data as part of the specification. In an actual input file,thes*
optional,<LISTof> data can be separated by commas or whitespaceSARING> data
are enclosed in single quotes (e'tgxt_book’).

5. Inputis order-independent (except for entries in data lists) and white-space insensitive.
Although the order of input shown in the Sample dakota.in Files on page 118 generally
follows the order of options in the input specification, this is not required.

6. Specifications may be abbreviated so long as the abbreviation is unique. For example, the
application specification within the interface keyword could be abbreviatempatic
but should not be abbreviatedag® since this would be ambiguous with
approximation

7. Comments are preceded by #.

Thedakota.input.spec file used in DAKOTA V1.1 is:

<KEYWORD = variables>, <FUNCTION = variables_kwhandler> \

[id_variables = <STRING>] \

[{continuous_design = <INTEGER>} \
cdv_initial_point = <LISTof><REAL>] \
cdv_lower_bounds = <LISTof><REAL>] \
cdv_upper_bounds = <LISTof><REAL>] \
cdv_descriptor = <LISTof><STRING>]] \

[{discrete_design = <INTEGER>} \
ddv_initial_point = <LISTof><INTEGER>] \
ddv_lower_bounds = <LISTof><INTEGER>] \
ddv_upper_bounds = <LISTof><INTEGER>] \
ddv_descriptor = <LISTof><STRING>]] \

[{uncertain = <INTEGER>} \
uv_descriptor = <LISTof><STRING>] \
{uv_distribution_type = <LISTof><STRING>} \
uv_means = <LISTof><REAL>] \
uv_std_deviations = <LISTof><REAL>] \
uv_lower_bounds = <LISTof><REAL>] \
uv_upper_bounds = <LISTof><REAL>] \
uv_filenames = <LISTof><STRING>]] \

[{continuous_state = <INTEGER>} \
{csv_initial_state = <LISTof><REAL>} \
[csv_descriptor = <LISTof><STRING>]] \

[{discrete_state = <INTEGER>} \
{dsv_initial_state = <LISTof><INTEGER>} \
[dsv_descriptor = <LISTof><STRING>]]

<KEYWORD = responses>, <FUNCTION = responses_kwhandler> \

[id_responses = <STRING>] \

[{active_set_vector} {on} | {off}] \

({num_objective_functions = <INTEGER>} \

[num_nonlinear_constraints = <INTEGER>]) \
\

{num_least_squares_terms = <INTEGER>} \

\

{num_response_functions = <INTEGER>} \

{no_gradients} \

User’s Instructions Commands Introduction - IDR Input Specification File 113

({numerical_gradients} \
[{method_source} {dakota} | {vendor}] \
[{interval_type} {forward} | {central}] \
[fd_step_size = <REAL>]) \

{analytic_gradients} \

({mixed_gradients} \
{id_numerical = <LISTof><INTEGER>} \
[{method_source} {dakota} | {vendor}] \
[{interval_type} {forward} | {central}] \
[fd_step_size = <REAL>] \
{id_analytic = <LISTof><INTEGER>}) \
{no_hessians} \

{analytic_hessians}

<KEYWORD = interface>, <FUNCTION = interface_kwhandler> \
[id_interface = <STRING>] \
({application} \
({analysis_driver = <STRING>} \
[input_filter = <STRING>] \
[output_filter = <STRING>]) \

({concurrent_drivers = <LISTof><STRING>} \
[pre_driver = <STRING>] \
[post_driver = <STRING>]) \

({system} [asynchronous] \

parameters_file = <STRING>] \

results_file = <STRING>] \
analysis_usage = <STRING>] \
aprepro] \
file_tag] \
file_save]) \

—_—

{direct} [asynchronous] \
evaluation_servers = <INTEGER>] \
processors_per_evaluation = <INTEGER>]) \
failure_capture} {abort} | {retry = <INTEGER>} | \

{recover = <LISTof><REAL>} | {continuation}]) \

—

({approximation} \
{neural_network} | {response_surface} | \
{multi_point} | {mars_surface}) \

{test = <STRING>}

<KEYWORD = strategy>, <FUNCTION = strategy_kwhandler> \
({multi_level} \
({uncoupled} \
[{adaptive} {progress_threshold = <REAL>}] \
{method_list = <LISTof><STRING>}) \

I

({coupled} \
{global_method = <STRING>} \
{local_method = <STRING>} \
[local_search_probability = <REAL>])) \

({seq_approximate_opt} \
{opt_method = <STRING>} \
{approximate_interface = <STRING>} \
{actual_interface = <STRING>}) \

({opt_under_uncertainty} \
{opt_method = <STRING>} \
{nond_method = <STRING>}) \

|
({branch_and_bound} \

{opt_method = <STRING>} \
{iterator_servers = <INTEGER>}) \

User’s Instructions Commands Introduction - IDR Input Specification File 114

({single_method} \
[method_pointer = <STRING>])

<KEYWORD = method>, <FUNCTION = method_kwhandler> \
id_method = <STRING>] \
interface_pointer = <STRING>] \
variables_pointer= <STRING>] \
responses_pointer = <STRING>] \
speculative] \
{output} {verbose} | {quiet}] \
linear_constraints = <LISTof><REAL>] \
max_iterations = <INTEGER>] \
max_function_evaluations = <INTEGER>] \
constraint_tolerance = <REAL>] \
convergence_tolerance = <REAL>] \
({dot_frcg} \
[{optimization_type} {minimize} | {maximize}]) \

({dot_mmfd} \
[{optimization_type} {minimize} | {maximize}]) \

I({dot_bfgs} \
[{optimization_type} {minimize} | {maximize}]) \

({dot_slp} \
[{optimization_type} {minimize} | {maximize}]) \

I({dot_sqp} \
[{optimization_type} {minimize} | {maximize}]) \

({npsol_sqp} \
[verify_level = <INTEGER>] \
[function_precision = <REAL>] \
[linesearch_tolerance = <REAL>]) \

|

({optpp_cg} \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

({optpp_g_newton} \
[{search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

({optpp_g_newton} \
[{search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

({optpp_newton} \
[{search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

({optpp_fd_newton} \
[{search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>] \
[gradient_tolerance = <REAL>]) \

({optpp_baqg_newton} \
[gradient_tolerance = <REAL>]) \

({optpp_ba_newton} \
[gradient_tolerance = <REAL>]) \

({optpp_bcg_newton} \

[{search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region}] \

User’s Instructions Commands Introduction - IDR Input Specification File 115

User’s Instructions

[max_step = <REAL>]
[gradient_tolerance = <REAL>])

({optpp_bcg_newton}
[{search_method} {value_based_line_search} |
{gradient_based_line_search} | {trust_region}]
[max_step = <REAL>]
[gradient_tolerance = <REAL>])

({optpp_bc_newton}
[{search_method} {value_based_line_search} |
{gradient_based_line_search} | {trust_region}]
[max_step = <REAL>]
[gradient_tolerance = <REAL>])

({optpp_bhc_ellipsoid}
[initial_radius = <REAL>]
[gradient_tolerance = <REAL>])

|
({optpp_pds} .
[search_scheme_size = <INTEGER>])

{optpp_test_new}

({sgopt_pga_real}

[solution_accuracy = <REAL>]

[max_cpu_time = <REAL>]

[seed = <INTEGER>]

[population_size = <INTEGER>]

[{selection_pressure} {rank = <REAL>} |
{proportional}]

[{replacement_type} {random = <INTEGER>} |
{CHC = <INTEGER>} | {elitist = <INTEGER>}
[new_solutions_generated = <INTEGER>]]

[{crossover_type} {two_point} | {mid_point} |
{blend} | {uniform}

[crossover_rate = <REAL>]]

[{mutation_type} ({normal} [std_deviation = <REAL>])

| {interval} | {cauchy}
[dimension_rate = <REAL>]
[population_rate = <REAL>]])

({sgopt_pga_int}

[solution_accuracy = <REAL>]

[max_cpu_time = <REAL>]

[seed = <INTEGER>]

[population_size = <INTEGER>]

[{selection_pressure} {rank = <REAL>} |
{proportional}]

[{replacement_type} {random = <INTEGER>} |
{CHC = <INTEGER>} | {elitist = <INTEGER>}
[new_solutions_generated = <INTEGER>]]

[{crossover_type} {two_point} | {uniform}
[crossover_rate = <REAL>] |

[{mutation_type} {offset} | {interval}
[dimension_rate = <REAL>]

[population_rate = <REAL>]])

({sgopt_coord_ps}
[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[{expansion_policy} {unlimited} | {once}]
[expand_after_success = <INTEGER>]
[expansion_exponent = <INTEGER>]
[contraction_exponent = <INTEGER>]
{initial_delta = <REAL>}
{threshold_delta = <REAL>}
[{exploratory_moves} {standard} | {offset} |

{best_first} | {biased_best_first}])

|
({sgopt_coord_sps}
[solution_accuracy = <REAL>]

Commands Introduction - IDR Input Specification File

——

116

max_cpu_time = <REAL>] \
seed = <INTEGER>] \
{expansion_policy} {unlimited} | {once}] \
expand_after_success = <INTEGER>] \
expansion_exponent = <INTEGER>] \
contraction_exponent = <INTEGER>] \
initial_delta = <REAL>} \
threshold_delta = <REAL>} \

[{exploratory_moves} {standard} | {offset} | \

{best_first} | {biased_best_first}]) \

|

({sgopt_solis_wets} \
solution_accuracy = <REAL>] \
max_cpu_time = <REAL>] \
seed = <INTEGER>] \
expand_after_success = <INTEGER>] \
contract_after_failure = <INTEGER>] \
initial_rho = <REAL>] \
threshold_rho = <REAL>]) \

({sgopt_strat_mc} \
solution_accuracy = <REAL>] \
max_cpu_time = <REAL>] \
seed = <INTEGER>] \
partitions = <LISTof><INTEGER>]) \

|

({nond_probability} \
{observations = <INTEGER>} \
[seed = <INTEGER>] \
{sample_type} {random} | {Ihs} \
{response_thresholds = <LISTof><REAL>}) \

({nond_mean_value} \
{response_filenames = <LISTof><STRING>}) \

({vector_parameter_study} \
({final_point = <LISTof><REAL>} \
{step_length = <REAL>} | {num_steps = <INTEGER>}) \

({step_vector = <LISTof><REAL>} \
{num_steps = <INTEGER>})) \

({list_parameter_study} \
{list_of_points = <LISTof><REAL>}) \

|

({centered_parameter_study} \
{percent_delta = <REAL>} \
{deltas_per_variable = <INTEGER>}) \

|
({multidim_parameter_study} \
{partitions = <LISTof><INTEGER>})

In the variables keyword, the main structure is that of the five optional group specifications for
continuous design, discrete design, uncertain, continuous state, and discrete state variables. Each
of these specifications can either appear or not appear as a group. Within the responses keyword,
the primary structure is the required specification of the function set (either an optimization
function set OR a least squares function set OR a generic function set must appear), followed by
the required specification of the gradients (either none OR numerical OR analytic OR mixed

must be specified) followed by the required specification of the Hessians (either none OR

analytic must be specified). Next, the interface keyword requires the selection of either an
application OR an approximation OR a test interface. Within the application block, the type must
be specified with either the system OR the direct required group specification. The strategy
specification is relatively simple, requiring either a multilevel OR a sequential approximate

User’s Instructions Commands Introduction - IDR Input Specification File 117

optimization OR an optimization under uncertainty OR a branch and bound OR a single method
strategy specification. Within the multilevel group specification, either an uncoupled OR a
coupled group specification must be supplied. Lastly, the method keyword is the most involved
specification; however, its structure is relatively simple. The structure is simply that of a
sequence of optional method-independent settings followed by a long list of possible methods
appearing as required group specifications (containing a variety of method-dependent settings)
separated by OR’s. Refer to Variables Commands on page 134, Responses Commands on page
141, Interface Commands on page 127, Strategy Commands on page 150, and Method
Commands on page 156 for detailed information on the keywords and their various optional and
required specifications. And for additional details on IDR specification logic and rules, refer to
[Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 1996].

Common Specification Mistakes

Spelling and omission of required parameters are the most common errors. Less obvious errors
include:

1. Documentation of new capability can lag the use of new capability in executables. When
parsing errors occur which the documentation cannot explain, reference to the particular
input specification used in building the executable will often resolve the errors.

2. Since keywords are terminated with the newline character, care must be taken to avoid
following the backslash character with any white space since the newline character will not
be properly escaped, resulting in parsing errors due to the truncation of the keyword
specification.

3. Care must be taken to include newline escapes when embedding comments within a keyword
specification. That is, newline characters will signal the end of a keyword specification even
if they are part of a comment line. For example, the following specification will be truncated

because the embedded comment neglects to escape the newline:

No error here: newline need not be escaped since comment is not embedded
responses, \
num_objective_functions = 1 \
Error here: this comment must escape the newline
analytic_gradients \
no_hessians

In most cases, the IDR system provides helpful error messages which will help the user isolate
the source of the parsing problem.

Sample dakota.in Files

A DAKOTA input file is a collection of the fields allowed in tdakota.input.spec
specification file which describe the problem to be solved by the DAKOTA system. Several
examples follow.

User’s Instructions Commands Introduction - Sample dakota.in Files 118

Sample 1: Optimization

The following sample input file shows single-method optimization of the Textbook Example on
page 192 using DOT’s modified method of feasible directions. It is available in the test directory
asDakota/test/dakota_textbook.in . Helpful notes are included in this sample input

file as comments.

DAKOTA INPUT FILE - dakota_textbook.in

NOTES: Specifications are delimited by newline characters. Therefore, to
continue a specification onto multiple lines, the back-slash character

is needed to escape the newline. Input is order-independent and
white-space insensitive. Keywords may be abbreviated so long as the
abbreviation is unique. Comments are preceded by #. Helpful NOTES
precede each section specification; however, the definitive resources
for input grammar are Dakota/src/dakota.input.spec and the Commands
chapter of the User’s Instructions manual.

Interface section specification

NOTES: Interfaces are 1 of 3 main types: application interfaces are used for
interfacing with simulation codes, approximation interfaces use
inexpensive design space approximations in place of expensive
simulations, and test interfaces use linked-in test functions for
algorithm testing purposes (to eliminate system call overhead).
Application interfaces can be further categorized into system and
direct types. The system type uses system calls to invoke the
simulation, while the direct type uses the same constructs as the test
interface for linked-in simulation codes. Both application interface
types use analysis_driver, input_filter, and output_filter
specifications. The system type additionally uses parameters_file,
results_file, analysis_usage, aprepro, file_tag, and file_save
specifications. The analysis_driver provides the name of the analysis
executable, driver script, or linked module; the input_filter and
output_filter provide pre- and post-processing for the analysis in the
procedure of mapping parameters into responses (default = NO_FILTER);
the parameters_file and results_file are data files which Dakota
creates and reads, respectively, in the system call case (default =
Unix temp files); analysis_usage defines nontrivial command syntax
(default = standard syntax); aprepro controls the format of the
parameters file for usage with the APREPRO utility; file_tag controls
the unique tagging of data files with function evaluation number
(default = no tagging); and file_save controls whether or not file
cleanup operations are performed (default = data files are removed
when no longer in use). Most settings are optional with meaningful
defaults as shown above. Refer to the Interface Commands section in
the User’s Instructions manual for additional information.

HHEHFHFHHFHFEHHHHFHFH T H TS HHHHHEHH

interface, \
application system, \
input_filter = ‘NO_FILTER’ \
output_filter = ‘NO_FILTER’ \
analysis_driver = ‘text_book’ \
parameters_file = ‘text_book.in’ \
results_file = ‘text_book.out’ \
analysis_usage = ‘DEFAULT’ \
file_tag \
file_save

Variables specification

NOTES: A variables set can contain design, uncertain, and state variables
for continuous, discrete, or mixed variable problem domains.

Design variables are those variables which an optimizer adjusts in
order to locate an optimal design. Each of the design parameters

can have an initial point, a lower bound, an upper bound, and a
descriptive tag. Uncertain variables are those variables which are
characterized by probability distributions. Each uncertain variable
specification can contain a distribution type, a mean, a standard
deviation, a lower bound, an upper bound, a histogram filename and a
descriptive tag. State variables are “other” variables which are to

be mapped through the interface. Each state variable specification
can have an initial state and a descriptor. State variables provide a

HHEHFEHHFHHHHH

User’s Instructions Commands Introduction - Sample dakota.in Files 119

convenience mechanism for parameterizing additional model inputs, such
as mesh density, solver convergence tolerance and time step controls,
and will be used to enact model adaptivity in future strategy
developments.

HHHH

variables, \
continuous_design = 2 \
cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ‘X1 'x2'

Responses specification

NOTES: This specification implements a generalized Dakota data set by
specifying a set of functions and the types of gradients and Hessians
for these functions. Optimization data sets require specification of
num_objective_functions and num_nonlinear_constraints. Multiobjective
opimization is not yet supported, so num_objective_functions must
currently be equal to 1. Uncertainty quantification data sets are
specified by num_response_functions. Nonlinear least squares data
sets are specified with num_least_squares_terms. Gradient type
specification may be no_gradients, analytic_gradients,
numerical_gradients or mixed_gradients. Numerical and mixed gradient
specifications can optionally include selections for method_source,
interval_type, and fd_step_size. Mixed_gradient specifications require
id_numerical & id_analytic lists to specify the gradient types for
different function numbers. Hessian type specification may currently

be no_hessians or analytic_hessians.

HHEHFHHHHHHEHT R

responses, \
num_objective_functions = 1 \
num_nonlinear_constraints = 2 \
analytic_gradients \
no_hessians

Strategy specification

NOTES: Contains specifications for multilevel, SAO, and OUU strategies. The
single_method strategy is a “fall through” strategy, in that in only

invokes a single iterator. If no strategy specification appears, then

single_method is the default.

strategy, \
single_method

Method specification
NOTES: method can currently be dot_frcg, dot_mmfd, dot_bfgs, dot_slp,

dot_sgp, npsol_sqgp, optpp_cg, optpp_q_newton, optpp_g_newton,

optpp_newton, optpp_fd_newton, optpp_ba_newton, optpp_baq_newton,

optpp_bc_newton, optpp_bcq_newton, optpp_bcg_newton,

optpp_bc_ellipsoid, optpp_pds, optpp_test_new, sgopt_pga_real,

sgopt_pga_int, sgopt_coord_ps, sgopt_coord_sps, sgopt_solis_wets,

sgopt_strat_mc, nond_probability, nond_mean_value,

vector_parameter_study, list_parameter_study,

centered_parameter_study, or multidim_parameter_study. Most method

control parameters are optional with meaningful defaults. Default

values for optional parameters are defined in the DataMethod class

constructor and are documented in the Method Commands section of the

User’s Instructions manual.

method, \

dot_mmfd, \

max_iterations = 50, \
convergence_tolerance = le-4 \
output verbose \

optimization_type minimize

User’s Instructions Commands Introduction - Sample dakota.in Files 120

Sample 2: Least Squares

The following sample input file shows a nonlinear least squares solution of the Rosenbrock
Example on page 204 using OPT++'s Gauss-Newton method. It is available in the test directory

asDakota/test/dakota_rosenbrock.in

interface, o
application system,
analysis_driver = ‘rosenbrock_lIs’

variables,
continuous_design = 2
cdv_initial_point -1.21.0
cdv_lower_bounds -2.0-2.0
cdv_upper_bounds 2020
cdv_descriptor ‘x1' ‘x2'
responses,

num_least_squares_terms = 2
analytic_gradients
no_hessians

method,
optpp_bcg_newton,
max_iterations = 50,
convergence_tolerance = 1e-4

Sample 3: Nondeterministic Analysis

The following sample input file shows Latin Hypercube Monte Carlo sampling using the
Textbook Example on page 192. It is available in the test direct@glasta/test/

dakota_textbook _Ihs.in

interface,
application system,
analysis_driver= ‘text_book’

variables, _
uncertain = 2
uv_distribution_type = ‘normal’ ‘normal’

uv_means = 248.89, 593.33

uv_std_deviations = 12.4, 29.7

uv_lower_bounds = 199.3, 474.63

uv_upper_bounds = 298.5, 712.

uv_descriptor = ‘TF1" ‘TF2
responses,

num_response_functions = 3
no_gradients
no_hessians

strategy,
single_method

method,
nond_probability,
observations = 20,

response_thresholds = 1.2e+11 6.e+04 3.5e+05\

seed=1
sample_type lhs

User’s Instructions Commands Introduction - Sample dakota.in Files

——

121

Sample 4: Parameter Study

The following sample input file shows a 1-D vector parameter study using the Textbook Example
on page 192. It is available in the test directoripakota/test/dakota_pstudy.in

interface, \
application system, \
asynchronous \
analysis_driver = ‘text_book’
variables, \
continuous_design = 3 \
cdv_initial_point 1.01.01.0
responses, \
num_objective_functions = 1 \
num_nonlinear_constraints = 2 \
analytic_gradients \
analytic_hessians
method, \
vector_parameter_study \
step_vector=.1.1.1 \

num_steps = 4

Sample 5: Multilevel Hybrid Strategy

The following sample input file shows a multilevel hybrid strategy using three iterators. It
employs a genetic algorithm, coordinate pattern search and full Newton gradient-based
optimization in succession to solve the Textbook Example on page 192. It is available in the test

directory adDakota/test/dakota_multilevel.in

strategy, \
multi_level uncoupled \
method_list = ‘GA’ ‘CPS’ ‘NLP’

method, \
sgopt_pga_real \

id_method = ‘GA’ \
variables_pointer = ‘V1’ \
interface_pointer = ‘|1’ \
responses_pointer = ‘R1’ \
population_size = 10 \
verbose output

method, \
sgopt_coord_sps \

id_method = ‘CPS’ \
variables_pointer = ‘V1’ \
interface_pointer = ‘11’ \
responses_pointer = ‘R1’ \
verbose output \
initial_delta = 0.1 \
threshold_delta = 1.e-4 \
solution_accuracy = 1.e-10 \
exploratory_moves best_first

method, \
optpp_newton \

id_method = ‘NLP’ \
variables_pointer = ‘V1’ \
interface_pointer = ‘11’ \
responses_pointer = ‘R2’ \
gradient_tolerance = 1.e-12 \
convergence_tolerance = 1.e-15

User’s Instructions Commands Introduction - Sample dakota.in Files 122

interface, \

id_interface = ‘I1’ \
application direct, \
analysis_driver= ‘text_book’
variables, \
id_variables = ‘V1’ \
continuous_design = 2 \

cdv_initial_point 0.6 0.7\
cdv_upper_bounds 5.8 2.9
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ‘X1 'x2'

responses, \
id_responses = ‘R1’ \
num_objective_functions = 1 \
no_gradients \
no_hessians

responses, \
id_responses = ‘R2’ \
num_objective_functions = 1 \
analytic_gradients \
analytic_hessians

Running DAKOTA

Basic information required for running DAKOTA includes the name and location of the
executable program and the command line syntax and options.

Executable Location

Remote installations

After installing and building the system from a new code distribution (see Distributions and
Checkouts on page 180 and Basic Installation on page 180), the DAKOTA executable will reside
in Dakota/src/<canonical_build_dir>/dakota , Where the canonical name

describes the platform and operating system under which the executable was bigfigecg.,
sun-solaris2.5.1). Thedakota file in theDakota/test directory is a soft link to the
Dakota/src/<canonical_build_dir>/dakota executable.

Sandia deelopersupported installations

The DAKOTA executable will have already been built by the DAKOTA developers and installed

in /usr/local/bin on the supported server machines. For file systems shared by multiple
platforms, simplified canonical names are sometimes used to distinguish between the executables
(e.g.,dakota_sun ,dakota hp ,dakota_sgi ,dakota_ibm , etc.). For file systems

unigue to a single platform (as is generally the case misiVlocal/bin), dakota without

any canonical modifiers is used.

User’s Instructions Commands Introduction - Running DAKOTA 123

For the following discussions, it will be assumed that an executable raketh is available
in the user’s path.

Command Line Inputs

Executing the program with the following syntax:
dakota

will result in the following usage message which describes the various optional and required
command line inputs:
usage: dakota [options and <args>]

-help (Print this summary)

-input <$val> (REQUIRED Dakota Problem Description file $val)

-read_restart <$val> (Read a previously written Dakota restart log file
$val)

-stop_restart <$val> (Stop restart file processing at evaluation $val)

-write_restart [$val] (Write a new Dakota restart log file $val)

Of these available command line inputs, only thiegut " option is required. The command
line input parser implemented in t@B®@mmandLineHandler class allows abbreviation so long
as the abbreviation is unique. For exampie ”

is commonly used in place ofitiput

The “help ” option prints the usage message above. Fimptt ” option provides the name

of the DAKOTA input file (see Sample dakota.in Files on page 118 for examples). The
read_restart " and “-write_restart ” command line inputs provide the names of restart
databases to read from and write to, respectively. I8tep’_restart " command line input
limits the number of function evaluations read from the restart database (the default is all the
evaluations) for those cases in which some evaluations were erroneous or corrupted.

Execution Syntax

Input/Output Management

To run DAKOTA with a particular input file, the following syntax can be used:
dakota -i dakota.in

This will echo stdout and stderr to the terminal. To redirect output to a file, any of a variety of
redirection variants can be used. The simplest of these redirects stdout:
dakota -i dakota.in > dakota.out

To append to a file rather than overwrite it, “>>" is used in place of “>”. To redirect stderr as well
as stdout, a “&” is appended with no embedded space, i.e. “>&” or “>>&” is used. To override
the noclobber environment variable (if set) in order to allow overwriting of an existing output file
or appending of a file that does not yet exist, a “!” is appended with no embedded space, i.e.
“SI7USEI US>I1T or “>>&17 s used.

To run the dakota process in the background, append an ampersand to the command with an
embedded space, e.g.:

User’s Instructions Commands Introduction - Running DAKOTA 124

dakota -i dakota.in > dakota.out &

Refer to [Anderson, G., and Anderson, P., 1986] for more information on redirection and
background commands.

Restart Management

To write a restart file using a particular name,-thiete_restart command line input is
used:
dakota -i dakota.in -write_restart my_restart_file
If no -write_restart specification is used, then DAKOTA will write a restart file using the
default namelakota.rst
To restart DAKOTA from a restart file, theead_restart command line input is used:
dakota -i dakota.in -read_restart my_restart_file
If no -read_restart specification is used, then DAKOTA will not read restart information
from any file (i.e., the default is no restart processing).
If the -write_restart and-read_restart specifications identify the same file
(including the case wheravrite_restart is not specified andread_restart identifies
dakota.rst), then new evaluations will be appended to the existing restart file.-If the
write_restart and-read_restart specifications identify different files, then the
evaluations read from the file identified ogad_restart are first written to the
write_restart file. Any new evaluations are then appended towiie restart file.

In this way, restart operations can be chained together indefinitely with the assurance that all of
the relevant evaluations are present in the latest restart file.

To read in only a portion of a restart file, tseop_restart control is used. Note that the
integer value specified refers to the number of entries to be read from the database, which may
differ from the evaluation number in the previous run if any duplicates were detected (since
duplicates are not replicated in the restart file). In the casestdfa restart specification,

it is usually desirable to specify a new restart file usvge_restart SO as to remove the
records of erroneous or corrupted function evaluations. For example, to read in the first 50
evaluations frondakota.rst

dakota -i dakota.in -read_restart dakota.rst
-stop_restart 50 -write_restart dakota_new.rst

Thedakota_new.rst file will contain the 50 processed evaluations fidakota.rst as

well as any new evaluations. All evaluations following th® Hodakota.rst have been
removed from the latest restart record.

DAKOTA's restart algorithm relies on its duplicate detection capabilities. Processing a restart file
populates the list of function evaluations that have been performed. Then, when the study is
reinitiated, many of the function evaluations requested by the iterator are intercepted by the
duplicate detection code. This approach has the primary advantage of restoring the complete
state of the iteration (including the ability to correctly detect subsequent duplicates) for all

User’s Instructions Commands Introduction - Running DAKOTA 125

iterators and multi-iterator strategies without the need for iterator-specific restart code. However,
the possibility exists for numerical round-off error to cause a divergence between the evaluations
performed in the previous and restarted studies. This has been extremely rare to date.

Tabular descriptions

In the following discussions of keyword specifications, tabular formats (Table 9 through Table
56) are used to present a short description of the specification, the actual syntax of the
specification frondakota.input.spec , @ sample specification as it would appear in an
input file, the status of the specification (required, optional, required group, or optional group),
and the default for an optional specification.

It can be difficult to capture in a simple tabular format the complex relationships that can occur
when specifications are nested within multiple groupings. For example, in an interface keyword,
theparameters_file specification is an optional specification within a required group
specification gystem) separated from another required group specificativact) by a

logical OR. The selection afystem ordirect is contained within another required group
specification §pplication) separated from other required group specifications
(approximation ,test) by logical OR’s. Thus, concisely describing a specification status in
a table fails to capture the complete picture of the specification inter-relationships which are
present irdakota.input.spec

To better capture these relationships, this documentation presents the various group
specifications in separate tables. Details of the outermost required groups are presented in one or
more tables (e.gapplication versusapproximation versudest in Table 10, Table 13,

and Table 14), and details of each of the innermost required groups are presented in additional
tables (e.g.system versudirect in Table 11 and Table 12). Ellipsis (...) are used within

tabular entries for group specifications to denote omissions from the group specification which

are explained in subsequent table entries.

User’s Instructions Commands Introduction - Tabular descriptions 126

Interface Commands

Description

The interface section in a DAKOTA input file specifies how function evaluations will be
performed. The three mechanisms currently in place for performing function evaluations involve
interfacing with a simulation, an approximation, or a test function. In the former case of a
simulation, theapplication interface is used to invoke the simulation with either system

calls or direct function calls. In the system call case, communication between DAKOTA and the
simulation occurs through parameter and response files, and in the direct function case,
communication occurs through the function parameter list. More information and examples on
interfacing with simulations is provided in The Application Interface on page 79. In the case of
an approximation, aapproximation interface can be selected to make use of surrogate
modeling capabilities available within DAKOTA&pproximationinterface class hierarchy (see
The Approximation Interface on page 95). Lastliest interface can be selected for direct
access to polynomial test functions which are compiled into the DAKOTA executable as part of
the direct function capability (see The Direct Function Application Interface on page 80). The
test interface provides a means for testing algorithms and strategies without system call
overhead and without the expense of engineering simulations.

Several examples follow. The first example shows an application interface specification which
specifies the use of system calls, the names of the analysis executable and the parameters and
results files, that separate filters will not be used, that no special analysis usage syntax will be
specified, and that parameters and responses files will be tagged and saved. Refer to The
Application Interface on page 79 for more information on the use of these options.

interface,\
application system,\
input_filter = ‘NO_FILTER'\
output_filter = ‘NO_FILTER'\
analysis_driver = ‘rosenbrock’\
parameters_file = ‘params.in’\
results_file = ‘results.out’\
analysis_usage = ‘DEFAULT\
file_tag\
file_save

The next example shows an approximation interface specification which invokes the response
surface approximation methodology.

interface,\
approximation,\
response_surface

The next example shows an test interface specification which specifies usterf theok
internal test function.

interface,\
test = ‘text_book’

User’s Instructions Interface Commands - Description 127

Specification

The interface specification has the following structure:

interface,\
<set identifier>\
<application specification>
or <approximation specification>
or <test specification>

Referring to the IDR Input Specification File on page 112, it is evident from the brackets that the
set identifier is an optional specification, and from the three required groups (enclosing in
parentheses) separated by OR'’s, that one and only one of the three interface specifications
(application , approximation , ortest) must be provided.

The optional set identifier can be used to provide a unique identifier string for labeling a
particular interface specification. A method can then identify the use of a particular interface by
specifying this label in it;iterface_pointer specification (see Method Commands on

page 156). The application, approximation, or test specification is used to define the specifics of
the interface to be used by a method for the mapping of parameters into responses. The following
sections describe each of these interface specifications in additional detalil.

Developer’s notesin the C++ implementation, the different interface classes are partDakuotalnterface class
hierarchy which uses the virtuadapfunction to polymorphically define the interface’s functionality. This allows the
specific identity and complexities of the interface to be hidden from the method since the usmapthumctionality

is common among all interfaces.

Set Identifier

The optional set identifier specification uses the keywbrihterface to input a string for

use in identifying a particular interface specification with a particular method (see also
interface_pointer in the Method Commands on page 156). For example, a method whose
specification containimterface_pointer = ‘|11’ will use an interface specification with
id_interface = ‘11’

It is appropriate to omit aid_interface string in the interface specification and a
correspondingnterface_pointer string in the method specification if only one interface
specification is included in the input file, since the binding of a method to an interface is
unambiguous in this case. More specifically, if a method omits specifying an

interface_pointer , then it will use the last interface specification parsed, which has the
least potential for confusion when only a single interface specification exists. Table 9 summarizes
the set identifier inputs.

User’s Instructions Interface Commands - Specification 128

Table 9 Specification detail for set identifier

Description Specification Sample Status Default
Interface set [id_interface = id_interface =‘I1’ | Optional use of last
identifier <STRING>] interface parsed

Application Interface

The application interface uses a simulator program, and optionally filter programs, to perform the
parameter to response mapping. The simulator and filter programs are invoked with either system
calls or direct function calls. In the former case, files are used for transfer of parameter and
response data between DAKOTA and the simulator program. This approach is simple and
reliable and does not require any modification to simulator programs. In the latter direct function
case, the function parameter list is used to pass data. This approach requires modification to
simulator programs so that they can be linked into DAKOTA; however it can be more efficient
through the elimination of system call overhead, can be less prone to loss of precision in that data
can be passed directly rather than written to and read from a file, and can enable multilevel
parallelism through MPI communicator partitioning as described in Implementation of
Parallelism on page 104.

The application interface group specification contains several specifications which are valid for
all application interfaces as well as additional specifications pertaining specifically to system call
and direct application interfaces. Table 10 summarizes the specifications valid for all application
interfaces, and Table 11 and Table 12 summarize the additional specifications for system call and
direct application interfaces. In Table 10, the names of the input filter, output filter, and analysis
driver executables are supplied as strings usinqthe_filter , output_filter , and
analysis_driver specifications. Both the system call and direct function application
interfaces use these same specifications.artadysis_driver specification is required, and
theinput_filter andoutput_filter specifications are optional with the default

behavior of no filter usage (string defaultN®® _FILTER’). If no filters are used, then the

interface is called a “1-piece Interface”; if filters are used, it is called a “3-piece Interface.”
Failure capturing in application interfaces is governed byaihé&e capture

specification. Supported directives for mitigating captured failures, as described in Failure
capturing on page 93, aabort ,retry ,recover , andcontinuation

Table 10 Specification detail for application interfaces
Description Specification Sample Status Default
Application ({application} ...) application Required | N/A
interface group
Input filter [input_filter = <STRING>]| input_filter = Optional no input
‘ifilter.exe’ filter

User’s Instructions Interface Commands - Application Interface 129

Table 10 Specification detail for application interfaces

Description Specification Sample Status Default
Output filter [output_filter = output_filter = Optional no output
<STRING>] ‘ofilter.exe’ filter
Analysis driver {analysis_driver = analysis_driver = Required N/A
<STRING>} ‘analysis.exe’
Failure capturing| [{failure_capture} {abort}| failure_capture retry | Optional abort
| {retry = <INTEGER>} | =5 group
{recover =
<LISTof><REAL>} |
{continuation}]

Note that the recent additionsadncurrent_drivers , pre_driver , and

post_driver to dakota.input.spec is a placeholder for the level of parallelism

involving concurrent analyses within a function evaluation (see Pending Extensions on page
104). This capability will be described in the V1.2 release where it will likely be merged with the
existing facility to becomeput_filter , analysis_driver s, andoutput_filter

(in which the use of a single analysis driver becomes a special case of the generalized
specification).

In addition to the general application interface specifications, the type of application interface
involves a selection betwesgstem ordirect required group specifications. For system call
application interfacegsynchronous , parameters_file , results_file ,

analysis_usage ,aprepro ,file tag ,andfile_ save are additional settings within

the group specification. Asynchronous function evaluations (system calls placed in the
background with “&”) can be specified with theynchronous specification, whereas the
default behavior is synchronous function evaluations (system calls in the foreground). Refer to
Enabling Software Components on page 100 for additional information on asynchronous
procedures. The parameters and results file names are supplied as strings using the
parameters_file andresults_file specifications. Both specifications are optional

with the default data transfer files being temporary files (@g/tmp/aaaa08861 , See

Unix temporary files on page 83). The parameters and results file names are passed on the
command line of the system calls (refer to 1-piece Interface on page 82 and 3-piece Interface on
page 81 for details). The format of the data in these files is as described in DAKOTA File Data
Formats on page 85 with the APREPRO format option for parameters files invoked via the
aprepro specification. Special analysis command syntax can be entered as a string using
analysis_usage . This special syntax replaces talysis_driver portion of

DAKOTA's system call; however, it does not affect timput_filter andoutput_filter

syntax (if filters are present). Its default is no special syntax (string defdDIEBAULT’), such

that theanalysis_driver will be used in the standard way as described in The System Call
Application Interface on page 81. File tagging (appending parameters and results files with the
function evaluation number; see File tagging on page 82) and file saving (leaving parameters and
results files in existence after their use is complete; see File saving on page 82) are controlled

User’s Instructions Interface Commands - Application Interface 130

with thefile_tag andfile_save flags. If these specifications are omitted, the default is no
file tagging (no appended function evaluation number) and no file saving (files will be removed
after a function evaluation). File tagging is most useful when multiple function evaluations are
running simultaneously using files in a shared disk space, and file saving is most useful when
debugging the data communication between DAKOTA and the simulation. The additional
specifications for system call application interfaces are summarized in Table 11. Refer to The
System Call Application Interface on page 81 for additional details and examples.

Table 11 Additional specifications for system call application interfaces
Description Specification Sample Status Default
Application ({system}...) system Required N/A
interface type group
Evaluation [asynchronous] asynchronous Optional synchronous
synchronization evaluations
Parameters file [parameters_file = parameters_file = Optional Unix temp files
name <STRING>] ‘params.in’
Results file name [results_file = results_file = Optional Unix temp files
<STRING>] ‘results.out’
Special analysis [analysis_usage = analysis_usage = Optional standard
usage syntax <STRING>] ‘analysis.exe < analysis usage
params.in >
results.out’
Aprepro format [aprepro] aprepro Optional standard format
File tag [file_tag] file_tag Optional no tagging
File save [file_save] file_save Optional no saving
For direct application interfacegsynchronous , evaluation_servers , and
processors_per_evaluation are additional settings within the required group.

Asynchronous function evaluations (POSIX multithreading) can be specified with the
asynchronous specification, whereas the default behavior is synchronous function
evaluations (direct procedure calls). Refer to Enabling Software Components on page 100 for
additional information on asynchronous procedures. @veuation_servers and
processors_per_evaluation specifications are used to configure multiprocessor

partitions for multilevel parallelism. Typically, one or the other is specified to define how the
processors allocated to an iterator are divided into multiprocessor evaluation servers; however, if
both are specified and they are not in agreementetvadnation_servers takes

precedence. Refer to Specifying Parallelism on page 107 for additional details and examples on
multiprocessor partitions. The direct application interface specifications are summarized in Table
12.

User’s Instructions Interface Commands - Application Interface 131

Table 12 Additional specifications for direct application interfaces

Description Specification Sample Status Default
Application ({direct} ...) direct Required N/A
interface type group
Evaluation [asynchronous] asynchronous Optional synchronous
synchronization evaluations
Number of [evaluation_servers =| evaluation_servers Optional number of
evaluation servers | <INTEGER>] =5 processors

minus 1
Number of [processors_per_evaly processors_per_ey Optional 1
processors per ation = <INTEGER>] | aluation = 256
evaluation

Approximation Interface

The approximation interface uses an approximate representation of a true model (a surrogate
model) to perform the parameter to response mapping. This approximation is built and updated
using data from the true model as described in The Approximation Interface on page 95.
Approximation interfaces are used extensively in the sequential approximate optimization
strategy (see Sequential Approximate Optimization on page 74), in which the goal is to reduce
expense by minimizing the number of function evaluations performed with the true model.

The approximation interface specification requires the specification of one of the following
approximation methodsteural_network , response_surface , multi_point , or
mars_surface . These specifications invoke a layered perceptron artificial neural network
approximation (see the The ANN Approximation Interface on page 98), a quadratic polynomial
response surface approximation (see The RSM Approximation Interface on page 97), a
multipoint approximation (not yet available), or a multivariate adaptive regression spline
approximation (see The MARS Approximation Interface on page 97), respectively. Table 13
summarizes the approximation interface specification.

Table 13 Specification detail for approximation interfaces
Description Specification Sample Status Default

Approximation ({approximation} ...) approximation Required | N/A

interface group

Type {neural_network} | neural_network Required N/A
{response_surface} |
{multi_point} |
{mars_surface}

User’s Instructions Interface Commands - Approximation Interface 132

Test Interface

The test interface uses an internally available test problem to perform the parameter to response
mapping. These problems are compiled directly into the DAKOTA executable as part of the
direct function application interface class (see The Direct Function Application Interface on page
80) and are used for algorithm testing.

The test interface specification requires the specification of a string to identify the test problem to
be used. Table 14 summarizes this specification.

Table 14 Specification detail for test interfaces
Description Specification Sample Status Default
Test interface {test = <STRING>} test = Required N/A
‘text_book’

Currently, only thetext_book ' simulator is available as an internal test problem. Information
on this problem is available in the Example Problems on page 328.

User’s Instructions Interface Commands - Test Interface 133

Variables Commands

Description

The variables section in a DAKOTA input file specifies the parameter set to be iterated by a
particular method. This parameter set is made up of design, uncertain, and state variable
specifications. Design variables can be continuous or discrete and consist of those variables
which an optimizer adjusts in order to locate an optimal design. Each of the design parameters
can have an initial point, a lower bound, an upper bound, and a descriptive tag. Uncertain
variables are continuous variables which are characterized by probability distributions. Each
uncertain variable specification can contain a distribution type, a mean, a standard deviation, a
lower bound, an upper bound, a histogram file name, and a descriptive tag. State variables can be
continuous or discrete and consist of “other” variables which are to be mapped through the
simulation interface. Each state variable specification can have an initial state and a descriptor.
State variables provide a convenient mechanism for parameterizing additional model inputs, such
as mesh density, simulation convergence tolerances and time step controls, and will be used to
enact model adaptivity in future strategy developments.

Several examples follow. In the first example, two continuous design variables are specified:
variables, \
continuous_design = 2 \
cdv_initial_point 0.9 1.1\
cdv_upper_bounds 5.8 2.9\
cdv_lower _bounds 0.5 -2.9 \
cdv_descriptor ‘radius’ ‘location’

In the next example, defaults are employed. In this casejnitial_point will default to
a vector of 0.0 valuesgdv_upper_bounds will default to vector values dBL_MAX
(defined in thdloat.h C header file)¢dv_lower_bounds will default to a vector of
DBL_MAXvalues, anadv_descriptor will default to a vector of ‘cdv’ strings, whera
goes from one to two:

variables, \
continuous_design = 2

In the last example, a variables specification containing continuous and discrete design variables,
uncertain variables, continuous and discrete state variables, and a set identifier is shown:

variables,\
id_variables = 'V1'\
continuous_design = 2\
cdv_initial_point 0.9 1.1\
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ‘radius’ ‘location’\
discrete_design = 1\
ddv_initial_point 2\
ddv_upper_bounds 1 \

User’s Instructions Variables Commands - Description 134

ddv_lower_bounds 3 \
ddv_descriptor ‘material’\
uncertain = 2\
uv_distribution_type = ‘normal’, ‘lognormal’ \
uv_means = 250.0 480.0 \
uv_std deviations = 12.4 27.1\
uv_lower_bounds = 220.0 410.0 \
uv_upper_bounds = 280.0 550.0 \
uv_descriptor = ‘T_fail_1"‘T_fail_2\
continuous_ state = 2\
csv_initial_state = 1.e-4 1.e-6\
csv_descriptor = ‘EPSIT1’ ‘EPSIT2'\
discrete_state = 1\
dsv_initial_state = 100\
dsv_descriptor = ‘load_case’
The most general case of having a mixture of each of the different types of variables is supported
within all of the iterators even though certain iterators will only modify certain types of variables
(e.g., optimizers only modify design variables). This implies that variables which are not under
the direct control of a particular iterator will be mapped through the interface unmodified for all
evaluations of the iterator. This allows for a variety of parameterizations within the model in

addition to those which are being used by a particular iterator.

Supporting the most general case is more difficult since decisions have to be made about how to
appropriately size gradient vectors and Hessian matrices. Derivatives are never needed with
respect to any discrete variables (since these derivatives do not exist) and the types of continuous
variables for which derivatives are needed depend on the type of study being performed. For
optimization and least squares problems, function derivatives are only needed with respect to the
continuous design variablesnce this is the information used by the optimizer in computing a
search direction. Similarly, for nondeterministic analysis methods which use gradient and/or
Hessian information, function derivatives are only needed with respectuadbgain

variables And lastly, parameter study methods which are cataloguing gradient and/or Hessian
information do not draw a distinction among continuous variables; therefore, function derivatives
must be supplied with respectdth continuous variablethat are specified (continuous design,
uncertain, and continuous state variables).

Specification

The variables specification has the following structure:

variables, \
<set identifier>\
<continuous design variables specification>\
<discrete design variables specification>\
<uncertain variables specification>\
<continuous state variables specification>\
<discrete state variables specification>

User’s Instructions Variables Commands - Specification 135

Referring to the IDR Input Specification File on page 112, it is evident from the enclosing
brackets that the set identifier specification and the continuous design, discrete design, uncertain,
continuous state, and discrete state variables specifications are all optional. The set identifier is a
stand-alone optional specification, whereas the latter five are oron@lspecifications,

meaning that the group can either appear or not as a unit. If any part of an optional group is
specified, then all required parts of the group must appear.

The optional set identifier can be used to provide a unique identifier string for labeling a
particular variables specification. A method can then identify the use of a particular set of
variables by specifying this label in itariables_pointer specification (see Method
Commands on page 156). The optional status of the continuous and discrete design, uncertain,
and continuous and discrete state variables specifications allows the user to specify only those
variables which are present (rather than explicitly specifying that the number of a particular type
of variables = 0). However, at least one type of variables must have nonzero size or an input error
message will result. The following sections describe each of these specification components in
additional detail.

Set Identifier

The optional set identifier specification uses the keyubrdariables to input a string for

use in identifying a particular variables set with a particular method (see also
variables_pointer in the Method Commands on page 156). For example, a method whose
specification containgariables_pointer = V1’ will use a variables set with

id_variables = V1’

If the set identifier specification is omitted, a particular variables set will be used by a method
only if that method omits specifyingvariables_pointer and if the variables set was the
last set parsed (or is the only set parsed). In common practice, if only one variables set exists,
thenid_variables can be safely omitted from the variables specification and

variables_pointer can be omitted from the method specification(s), since there is no
potential for ambiguity in this case. Table 15 summarizes the set identifier inputs.
Table 15 Specification detail for set identifier
Description Specification Sample Status Default
Variables set [id_variables = id_variables = ‘'V1’ Optional use of last
identifier <STRING>] variables
parsed

Design Variables

Within the optional continuous design variables specification group, the number of continuous
design variables is a required specification and the initial guess, lower bounds, upper bounds, and

User’s Instructions Variables Commands - Set Identifier 136

variable names of the continuous design variables are optional specifications. Likewise, within
the optional discrete design variables specification group, the number of discrete design variables
is a required specification and the initial guess, lower bounds, upper bounds, and variable names
of the discrete design variables are optional specifications. Default values for optional
specifications include zeros for initial values, positive and negative machine limits for upper and
lower bounds, and numbered strings for descriptors. Table 16 summarizes the details of the
continuous design variable specification and Table 17 summarizes the details of the discrete
design variable specification.

Table 16 Specification detail for continuous design variables

Description Specification Sample Status Default

Continuous [{continuous_design = continuous_desig| Optional no continuous

design variableg <INTEGER>} ...] n=4 group design variables

Initial point [cdv_initial_point = cdv_initial_point | Optional Vector values =
<LISTof><REAL>] =1.,2.1,034.2 0.0

Lower bounds [cdv_lower_bounds = cdv_lower_bound| Optional Vector values =
<LISTof> <REAL>] s=-1.,-2.,0.,-4.2 -DBL_MAX

Upper bounds [cdv_upper_bounds = cdv_upper_bound Optional Vector values =
<LISTof> <REAL>] s=5.2,6.3,6.6,9.1 +DBL_MAX

Descriptors [cdv_descriptor = <LISTof>| cdv_descriptor = | Optional Vector of
<STRING>] ‘cl’, 'c2’, 'c3, ‘cdv_i’ where i

¢4 =1,23..
Table 17 Specification detail for discrete design variables

Description Specification Sample Status Default

Discrete design| [{discrete_design = discrete_design = | Optional no discrete

variables <INTEGER>} ...] 2 group design

variables

Initial point [ddv_initial_point = ddv_initial_point=| Optional Vector values =
<LISTof> <INTEGER>] 3,5 0

Lower bounds [ddv_lower_bounds = ddv_lower_boundg Optional Vector values =
<LISTof> <INTEGER>] =0,0 INT_MIN

Upper bounds [ddv_upper_bounds = ddv_upper_bounds Optional Vector values =
<LISTof> <INTEGER>] =10, 10 INT_MAX

Descriptors [ddv_descriptor = <LISTofy ddv_descriptor = | Optional Vector of
<STRING>] ‘d1’, 'd2’ ‘ddv_i’ where i

=1,23,..
Thecdv_initial_point andddv_initial_point specifications provide the point in

design space from which an iterator is started for the continuous and discrete design variables,
respectively. Thedv_lower_bounds ,ddv_lower _bounds ,cdv_upper bounds and

User’s Instructions Variables Commands - Design Variables 137

ddv_upper_bounds restrict the size of the feasible design space and are frequently used to
prevent nonphysical designs. The defaults for these bounds are linked to architecture constants
(DBL_MAXINT_MAX;, INT_MIN) which are defined in thiobat.h ~ andlimits.h system
header files. Thedv_descriptor andddv_descriptor specifications supply strings

which will be replicated through the Dakota output to help identify the numerical values for these
parameters.

Uncertain Variables

Within the optional uncertain variables specification group, the number of uncertain variables
and the distribution types are required specifications and the means, standard deviations, lower
bounds, upper bounds, histogram file names, and descriptors are optional specifications. That is,
if the uncertain variables group specification is included, then the number of uncertain variables

and distribution types must be supplied at a minimum, whereas the other specifications in the
group can rely on default values. Table 18 summarizes the details of the uncertain variable

specification.
Table 18 Specification detail for uncertain variables specification
Description Specification Sample Status Default
Uncertain [{uncertain = uncertain = 2 Optional no uncertain
variables <INTEGER>} ...] group variables
Distribution type | {uv_distribution_type =| uv_distribution_type =| Required N/A
<LISTof> <STRING>} | ‘normal’, ‘lognormal’
Means [uv_means = <LISTof>| uv_means = 250., 480. Optional Vector valugs
<REAL>] =0
Standard [uv_std_deviations = uv_std_deviations = | Optional Vector values
deviations <LISTof> <REAL>] 12.4,27.1 =0
Lower bounds [uv_lower_bounds = | uv_lower_bounds = | Optional Vector values
<LISTof> <REAL>] 220., 410. =-DBL_MAX
Upper bounds [uv_upper_bounds = | uv_upper_bounds = | Optional Vector values
<LISTof> <REAL>] 280., 550. =+
DBL_MAX
Histogram file [uv_filenames = uv_filenames = Optional no histogram
names <LISTof> <STRING>] | ‘T_faill.dat’, file names
‘T_fail2.dat’
Descriptors [uv_descriptor = uv_descriptor = Optional Vector of
<LISTof> <STRING>] | ‘T_faill’, ‘T_fail2’ ‘uv_i’ where i
=1.23,...

Theuv_distribution_type

vector identifies the type of distribution used to describe the

statistics of each uncertain variable. Allowable distribution types are currently ‘normal’,
‘lognormal’, ‘constant’, ‘uniform’, ‘loguniform’, ‘weibull’, ‘logweibull’, and ‘histogram’. The

User’s Instructions

Variables Commands - Uncertain Variables

138

uv_means anduv_std_deviations specifications provide this data for those distributions
which are characterized by means and standard deviations (normal and weibull are; constant,
uniform, and histogram are not). Likewise, tine lower_bounds anduv_upper_bounds

restrict the tails of the distributions for those distributions for which bounds are meaningful.
Default bounds are linked to an architecture consiiBt (MAX defined in théloat.h

system header file. They_filenames specification provides the file names for variables of
the histogram distribution type. Thes_descriptor specification provides strings which will

be replicated through the Dakota output to help identify the numerical values for these
parameters.

Each of the vector inputs, if specified, must be of length equal to the number of uncertain
variables. Since certain distribution types may not have values for eachuef theans,

uv_std_deviations , uv_lower_bounds ,uv_upper_bounds , anduv_filenames
specifications, these arrays should be padded with place holders. For example, if
uv_distribution_type = ‘normal’, ‘uniform’, ‘histogram’, thenuv_std_deviations

might equal 12.0, 0, O where the trailing O’s are place holders in the array since uniform and
histogram distributions do not specify standard deviations. Likewigefjlenames would be

specified as ', *, ‘file.dat’ since only the histogram distribution type requires a file name
specification. This behavior was chosen since it is believed to be more readable at a glance.

State Variables

Within the optional continuous state variables specification group, the number of continuous
state variables and their initial states are required specifications and the continuous descriptor
vector is an optional specification. Likewise, within the discrete state variables specification
group, the number of discrete state variables and their initial states are required specifications and
the discrete descriptor vector is an optional specification. These variables provide a convenient
mechanism for managing additional model parameterizations such as mesh density, simulation
convergence tolerances, and time step controls. Table 19 summarizes the details of the
continuous state variable specification and Table 20 summarizes the details of the discrete state
variable specification.

Table 19 Specification detail for continuous state variables
Description Specification Sample Status Default

Continuous state| [{continuous_state = continuous_state Optional No continuous

variables <INTEGER>} ...] =2 group state variables

Initial states {csv_initial_state = csv_initial_state | Required N/A
<LISTof><REAL>} =3.1,4.2

Descriptors [csv_descriptor = csv_descriptor =| Optional Vector of
<LISTof><STRING>] ‘EPSITL’, ‘csv_i’ wherei

‘EPSIT2’ =1,23,...

User’s Instructions Variables Commands - State Variables 139

Table 20

Specification detail for discrete state variables

Description Specification Sample Status Default
Discrete state [{discrete_state = discrete_state =| Optional No discrete
variables <INTEGER>} ...] 2 group state variables
Initial states {dsv_initial_state = dsv_initial_state | Required N/A

<LISTof><REAL>} =3,4
Descriptors [dsv_descriptor = dsv_descriptor=| Optional Vector of
<LISTof><STRING>] ‘materiall’, ‘dsv_i’ wherei
‘material2’ =1,2,3,...

Thecsv_initial_state

anddsv_initial_state

specifications define the initial
values for the continuous and discrete state variables which will be passed through to the

simulator (e.g., in order to define parameterized modeling controlsgsvhdescriptor

anddsv_descriptor

output to help identify the numerical values for these parameters.

User’s Instructions

Variables Commands - State Variables

vectors provide strings which will be replicated through the Dakota

140

Responses Commands

Description

The responses specification in a DAKOTA input file specifies the data set that can be recovered
from the interface during the course of iteration. This data set is made up of a set of functions,
their first derivative vectors (gradients), and their second derivative matrices (Hessians). This
abstraction provides a generic data containerddetaResponselass) whose contents are
interpreted differently depending upon the type of iteration being performed. In the case of
optimization, the set of functions consists of an objective function (or objective functions in the
case of multiobjective optimization) and nonlinear constraints. Linear constraints are not part of
a response set since their coefficients can be communicated to an optimizer at startup and then
computed internally for all function evaluations (see NPSOL Method on page 162). In the case of
least squares iterators, the functions consist of individual residual teotrih¢ sum of the

squares objective function; this function is computed internally by the least squares iterators). In
the case of nondeterministic iterators, the function set is made up of generic response functions
for which the effect of parameter uncertainty is to be quantified. Lastly, parameter study iterators
may be used with any of the response data set types. Within the C++ implementation, the same
data structures are used to provide each of these response data set types; only the interpretation
of the data varies from iterator branch to iterator branch.

Gradient availability may be describediy gradients , numerical_gradients ,
analytic_gradients, ormixed_gradients . “no_gradients " means that gradient
information is not needed in the studgumerical_gradients ” means that gradient
information is needed and will be computed with finite differences using either the native or one
of the vendor finite differencing routinearalytic_gradients ” means that gradient
information is available directly from the simulation (finite differencing is not required). And
“mixed_gradients " means that some gradient information is available directly from the
simulation whereas the rest will have to be finite differenced.

Hessian availability may be describedy hessians oranalytic_hessians where the
meanings are the same as for the corresponding gradient availability settings. Numerical
Hessians are not currently supported, since, in the case of optimization, this would imply a finite
difference-Newton technique for which a direct algorithm already exists. Capability for
numerical Hessians can be added if the need arises.

The responses specification provides a description of the data set that is available for use by the
iteratorduring the course of its iteratiohis should be distinguished from the data set

described in an active set vector (see DAKOTA File Data Formats on page 85) which describes
the subset of the available data neeole@ particular function evaluatioPut another way, the
responses specification is a broad description of the data that is available whereas the active set
vector describes the particular subset of the available data that is currently needed.

User’s Instructions Responses Commands - Description 141

Several examples follow. The first example shows an optimization data set of an objective
function and two nonlinear constraints. These three functions have analytic gradient availability
and no Hessian availability.

responses,\
num_objective_functions = 1\
num_nonlinear_constraints = 2\
analytic_gradients\
no_hessians

The next example shows a specification for a least squares data set. The six residual functions
will have numerical gradients computed using the dakota finite differencing routine with central
differences of 0.1% (plus/minus delta value = .001*value).

responses,\
num_least_squares_terms = 6\
numerical_gradients\
method_source dakota\
interval_type central\
fd_step_size = .001\
no_hessians

The last example shows a specification that could be used with a nondeterministic iterator. The
three response functions have no gradient or Hessian availability; therefore, only function values
will be used by the iterator.

responses,\
num_response_functions = 3\
no_gradients\
no_hessians

Parameter study iterators are not restricted in terms of the response data sets which may be
catalogued; they may be used with any of the function specification examples shown above.

Specification

The responses specification has the following structure:
responses, \

<set identifier>\

<active set vector usage>\

<function specification>\

<gradient specification>\

<hessian specification>
Referring to the IDR Input Specification File on page 112, it is evident from the enclosing
brackets that the set identifier and the active set vector usage specifications are optional.
However, the function, gradient, and Hessian specifications are all required specifications, each
of which contains several possible specifications separated by logical OR’s. The function
specification must be one of three types: 1) a group containing objective and constraint functions,
2) a least squares terms specification, or 3) a response functions specification. The gradient
specification must be one of four types: 1) no gradients, 2) numerical gradients, 3) analytic

User’s Instructions Responses Commands - Specification 142

gradients, or 4) mixed gradients. And the Hessian specification must be either 1) no Hessians or
2) analytic Hessians.

The optional set identifier can be used to provide a unique identifier string for labeling a

particular responses specification. A method can then identify the use of a particular response set
by specifying this label in iteesponses_pointer specification (see Method Commands on

page 156). The active set vector usage setting allows the user to turn off active set distinctions
(default is on) so that a simulation interface can neglect to include active set logic (at the possible
penalty of wasted computations). The function, gradient, and Hessian specifications define the
data set that can be recovered from the interface. The following sections describe each of these
specification components in additional detail.

Set Identifier

The optional set identifier specification uses the keyuwbrnkesponses to input a string for

use in identifying a particular responses set with a particular method (see also
responses_pointer in the Method Commands on page 156). For example, a method whose
specification containesponses_pointer = ‘R1’ will use a responses set with
id_responses = ‘RY’

If this specification is omitted, a particular responses set will be used by a method only if that
method omits specifying r@sponses_pointer and if the responses set was the last set
parsed (or is the only set parsed). In common practice, if only one responses set exists, then
id_responses can be safely omitted from the responses specification and

responses_pointer can be omitted from the method specification(s), since there is no
potential for ambiguity in this case. Table 21 summarizes the set identifier inputs.
Table 21 Specification detail for set identifier
Description Specification Sample Status Default
Responses set [id_responses = id_responses = ‘R1’ Optional use of last
identifier <STRING>] responses
parsed

Active Set Vector Usage

A future capability will be the option to turn the active set vector (ASV) usagw off .

Currently, only the defaulin setting is supported; its behavior is described in DAKOTA File
Data Formats on page 85. Setting the ASV controffto will cause Dakota to always request a
“full” data set (the full function, gradient, and Hessian data that is available in the problem as
specified in the responses specificatimmeach function evaluationFor example, if ASV

control isoff and the responses section specifies four response functions, analytic gradients,
and no Hessians, then the ASVereryfunction evaluation will be a vector of length four

User’s Instructions Responses Commands - Set Identifier 143

containing all threes, regardless of what subset of this data is currently needed. While wasteful of
computations in many instances, this removes the need for ASV-related logic in user-built
interfaces. That is, ASV control setda will result in requests of only that specific data which

is needed on each evaluation and will require the user’s interface to read the ASV requests and
perform the appropriate logic in conditionally returning only the data requested. Conversely,
ASYV control set toff removes the need for this additional logic and allows the user to return
the same data set on every evaluation. In general, the dafaoéthavior is recommended for
efficiency through the elimination of unnecessary computations, although in some instances,
ASV control set toff can simplify operations and speed filter development for time critical
applications.

Note that in all cases, the data returned to DAKOTA from the user’s interface must match the
ASV passed in (or else a response recovery error will result). The important observation is that
when ASV control ioff , the ASV vector values do not change from one evaluation to the next.
Therefore their content need not be checked on every evaluation. Table 22 summarizes the active
set vector usage setting.

Table 22 Specification detail for active set vector usage specification
Description Specification Sample Status Default
Active set vector | [{active_set vector} {on}| | active_set vector on Optional on
usage {off}] group

Function specification

The function specification must be one of three types: 1) a group containing objective and
constraint functions, 2) a least squares terms specification, or 3) a response functions
specification. These function sets correspond to optimization, least squares, and uncertainty
guantification iterators, respectively. Parameter study iterators may be used with any of the three
function specifications.

Objective and Constraint Functions (Optimization Data Set)

An optimization data set is specified usmgn_objective_functions , and optionally
num_nonlinear_constraints . Multiobjective optimization is not yet supported within

the optimizer branch, stum_objective_functions should be set to one when using

DOT, NPSOL, OPT++, or SGOPT. Direct input of linear constraints can be used to improve the
efficiency of NPSOL (seknear_constraints in Method Independent Controls on page
158). However, DOT, OPT++, and SGOPT do not yet support specialized handling of linear
constraints; in these cases, any linear constraints should be included in the more general
num_nonlinear_constraints count. Table 23 summarizes the optimization data set
specification.

User’s Instructions Responses Commands - Function specification 144

Table 23 Specification detail for optimization data sets

Description Specification Sample Status Default
Number of ({num_objective_functions = num_objective_funct Required N/A
objective <INTEGER>}..) ions=1 group
functions
Number of [num_nonlinear_constraints = num_nonlinear_cong Optional 0
nonlinear <INTEGER>] traints = 2
constraints

Least Squares Terms (Least Squares Data Set)

A least squares data set is specified usingn_least_squares_terms . Each of these terms

is a residual function to be driven towards zero. These types of problems are commonly
encountered in parameter estimation and model validation. Least squares problems are most
efficiently solved using special-purpose least squares solvers such as Gauss-Newton or
Levenberg-Marquardt; however, they may also be solved using general-purpose optimization
algorithms. It is important to realize that, while DAKOTA can solve these problems with either
least squares or optimization algorithms, the response data sets to be returned from the simulator
are different. Least squares involves a set of residual functions whereas optimization involves a
single objective function (sum of the squares of the residuals). Therefore, derivative data in the
least squares case involves derivatives of the least squares terms, whereas the optimization case
involves derivatives of the sum of the squares objective function. Switching between the two
approaches will likely require different simulation interfaces capable of returning the different
granularity of response data required. Table 24 summarizes the least squares data set
specification.

Table 24 Specification detail for nonlinear least squares data sets
Description Specification Sample Status Default
Number of Least | {num_least_squares_terms| num_least_squares_termsRequired N/A
Squares Terms = <INTEGER>} =20

Response Functions (Generic Data Set)

A generic response data set is specified usimy_response_functions . Each of these

functions is simply a response quantity of interest with no special interpretation taken by the
method in use. This type of data set is used by uncertainty quantification methods, in which the
effect of parameter uncertainty on response functions is quantified, and can also be used in
parameter studies (although parameter studies are not restricted to this data set), in which the
effect of parameter variations on response functions is evaluated. Whereas objective, constraint,
and residual functions have special meanings within the data sets used by optimization and least
squares algorithms (i.e., their usage is linked to their identity), the response functions in an

User’s Instructions Responses Commands - Function specification 145

uncertainty quantification or parameter study need not have a specific interpretation. This is due
primarily to the fact that the values of these response functions are not fed back to these
algorithms as a basis for additional iterative improvement. Therefore, the user is free to define
whatever functional form is convenient. Table 25 summarizes the generic response function data
set specification.

Table 25 Specification detail for generic response function data sets
Description Specification Sample Status Default
Number of {num_response_functi| num_response_functi Required N/A
Response ons = <INTEGER>} ons =2
Functions

Gradient specification

The gradient specification must be one of four types: 1) no gradients, 2) numerical gradients, 3)
analytic gradients, or 4) mixed gradients.

No Gradients

Theno_gradients specification means that gradient information is not needed in the study.
Therefore, it will neither be retrieved from the simulation nor computed with finite differences.
no_gradients is a complete specification for this case.

Numerical Gradients

Thenumerical_gradients specification means that gradient information is needed and

will be computed with finite differences using either the native or one of the vendor finite
differencing routines. Themethod_source setting specifies the source of the finite difference
routine that will be used to compute the numerical gradidatsota denotes DAKOTA'S

internal finite differencing algorithm aneééndor denotes the finite differencing algorithm

supplied by the iterator package in use (DOT, NPSOL, and OPT++ each have their own internal
finite differencing routines). Theendor routine was chosen as the default since certain

libraries modify their algorithm when they are aware that finite differencing is being performed.
Since thedakota routine hides this fact from the optimizers (the optimizers are configured to
accept user-supplied gradients, which they assume to be of analytic accuracy), the potential
exists for thevendor setting to trigger the use of an algorithm more optimized for the higher
expense and/or lower accuracy of finite-differencing (e.g., NPSOL uses gradients in its line
search when in user-supplied gradient mode, but uses a value-based line search procedure when
internally finite differencing). However, while this algorithm modification may reduce expense in
serial operations, th@akota routine is preferable when seeking to exploit the parallelism in
finite difference evaluations (see Exploiting Parallelism on page 99). And in fact, NPSOL's use

User’s Instructions Responses Commands - Gradient specification 146

of gradients in its line search (user-supplied gradient mode) provides excellent load balancing for
parallel optimization without need to resort to speculative optimization approaches. The
interval_type setting is used to select betwderward andcentral differences in the
numerical gradient calculations. The DAKOTA, DOT, and OPT++ routines havddratard
andcentral differences available, and NPSOL starts wviattward differences and

automatically switches tcentral differences as the iteration progresses (the user has no
control over this). Lastlyid_step_size specifies theelativefinite difference step size to be

used in the computations. For DAKOTA, DOT, and OPT++, the intervals are computed by
multiplying thefd_step_size with the current parameter value. In this case, a minimum
absolute differencing interval is needed when the current parameter value is close to zero. This
prevents finite difference intervals for the parameter which are too small to distinguish
differences in the response quantities being computed. DAKOTA, DOT, and OPT++ all use
1.e-2*fd_step_size as their minimum absolute differencing interval. With a

fd_step_size = .001 , for example, DAKOTA, DOT, and OPT++ will use intervals of

.001* current value with a minimum interval dfe-5 . NPSOL uses a different formula for its
finite difference intervaldd_step_size*(1+| current parameter valye|This definition has

the advantage of eliminating the need for a minimum absolute differencing interval since the
interval no longer goes to zero as the current parameter value goes to zero. Table 26 summarizes
the numerical gradient specification.

Table 26 Specification detail for numerical gradients
Description Specification Sample Status Default

Numerical ({numerical_gradients} ...) numerical_gradients Required | N/A

gradients group

Method source [{method_source} {dakota} | method_source, Optional vendor
{vendor}] dakota group

Interval Type [{interval_type} {forward} | interval_type, forward| Optional forward
{central}] group

Finite difference | [fd_step_size = <REAL>] fd_step_size = 0.001 Optional 0.001

step size

Analytic Gradients

Theanalytic_gradients specification means that gradient information is available

directly from the simulation (finite differencing is not required). The simulation must return the
gradient data in the DAKOTA format (see DAKOTA File Data Formats on page 85) for the case
of file transfer of dataanalytic_gradients is a complete specification for this case.

Mixed Gradients

Themixed_gradients specification means that some gradient information is available
directly from the simulation (analytic) whereas the rest will have to be finite differenced

User’s Instructions Responses Commands - Gradient specification 147

(numerical). This specification is useful since it is generally wise to make use of as much
analytic gradient information as is available and then to finite difference for the rest. For
example, the objective function may be a simple analytic function of the design variables (e.g.,
weight) whereas the constraints are nonlinear implicit functions of complex analyses (e.g.,

maximum stress). Thd_analytic list specifies by number the functions which have
analytic gradients, and th@ numerical list specifies by number the functions which must
use numerical gradients. Theethod_source , interval_type , andfd_step_size
specifications are as described previously under the Numerical Gradients on page 146
specification and pertain to those functions listed bydheumerical list. Table 27
summarizes the mixed gradient specification.
Table 27 Specification detail for mixed gradients
Description Specification Sample Status Default
Mixed gradients | ({mixed_gradients}...) mixed_gradients Required N/A
group
Analytic {id_analytic = <LISTof> id_analytic = 2,4 Required N/A
derivatives <INTEGER>
function list
Numerical {id_numerical = <LISTof> id_numerical =1,3,5 Required N/A
derivatives <INTEGER>}
function list
Method source [{method_source} {dakota} || method_source, dakota Optional | vendor
{vendor}] group
Interval Type [{interval_type} {forward} | interval_type, forward | Optional forward
{central}] group
Finite difference | [fd_step_size = <REAL>] fd_step_size = 0.001 Optional 0.001
step size

Hessian specification

Hessian availability must be specified with either hessians oranalytic_hessians

Numerical Hessians are not currently supported, since, in the case of optimization, this would
imply a finite difference-Newton technique for which a direct algorithm already exists.
Capability for numerical Hessians can be added if the need arises.

No Hessians

Theno_hessians specification means that the method does not require Hessian information.
Therefore, it will neither be retrieved from the simulation nor computed with finite differences.
no_hessians is a complete specification for this case.

User’s Instructions Responses Commands - Hessian specification 148

Analytic Hessians

Theanalytic_hessians specification means that Hessian information is available directly
from the simulation. The simulation must return the Hessian data in the DAKOTA format (see
DAKOTA File Data Formats on page 85) for the case of file transfer of data.
analytic_hessians is a complete specification for this case.

User’s Instructions Responses Commands - Hessian specification 149

Strategy Commands

p—

Description

The strategy section in a DAKOTA input file specifies the top level technique which will govern
the management of iterators and models in the solution of the problem of interest. Five strategies
currently existmulti_level , Seq_approximate_opt , Opt_under_uncertainty ,
branch_and_bound , andsingle_method . In amulti_level optimization strategy, a

list of methods is specified which will be used synergistically in seeking an optimal design.The
goal here is to exploit the strengths of different optimization algorithms through different stages
of the optimization process. Global/local hybrids (e.g., genetic algorithms combined with
nonlinear programming) are a common example in which the desire for a global optimum is
balanced with the need for efficient navigation to a local optimum. In sequential approximate
optimization 6eq_approximate_opt), a set of points is selected from a design and analysis
of computer experiments (DACE) and evaluated with the simulation model. These results are
then used to build an approximate model, such as a response surface or an artificial neural
network. An optimizer iterates on this approximate model and computes an approximate
optimum. This point is evaluated with the simulation model and the measured improvement in
the simulation model is used to modify the boundaries (i.e., trust region) of the approximation.
The approximation is then updated with the new point and additional approximate optimization
cycles are performed until convergence. The goal seth approximate_opt Is to reduce

the total number of simulations required for the optimization. In optimization under uncertainty
(opt_under_uncertainty), @ nondeterministic iterator is used to evaluate the effect of
uncertain variable distributions on responses of interest. These responses and/or their statistics
are then included in the objective and constraint functions of an optimization process. The
nondeterministic iteration may be nested within the optimization iteration, nested with
approximations, or segregated in an uncoupled approach. In the branch and bound strategy
(branch_and_bound), mixed continuous/discrete applications can be solved through
parameter domain decomposition and relaxation of integrality constraints. Lastly, the
single_method strategy provides the means for simple execution of a single iterator.

The specification fomulti_level involves a list of method identifier strings, and each of the
corresponding method specifications (see Method Commands on page 156) has the responsibility
for identifying the variables, interface, and responses specifications that each method will use.
Theseq_approximate opt strategy must specify one iterator, an approximate interface,

and an actual interface. The same variables and responses specifications will be used by both
interfaces. Thept_under_uncertainty strategy must specify the optimization and
nondeterministic iterators and, again, each of the corresponding method specifications points to
the variables, interface, and responses specifications to be used (which, in this case, will likely be
different since optimization and nondeterministic methods use different data sets). The
branch_and_bound strategy must specify one iterator and the number of concurrent iterator
servers to be utilized. Thengle_method strategy may specify a method identifier which in

User’s Instructions Strategy Commands - Description 150

turn specifies the variables, interface, and responses identifiers, or it may specify nothing
additional and invoke the default behavior of employing the last specifications parsed. Invoking
the default behavior is particularly appropriate if only one specification is present for method,
variables, interface, and responses since there is no source for confusion in this case. In addition,
single_method s the default strategy if no strategy specification is supplied.

Example specifications for the five strategies follovm@ti_level example is:

strategy, \
multi_level uncoupled\
method_list = ‘GA1’, ‘CPS1’, ‘NLP1’

A seq_approximate_opt example specification is:

strategy, \
seq_approximate_opt\
opt_method = ‘NLP1'\
approximate_interface = ‘resp_surf’\
actual_interface = ‘simulation’

An opt_under_uncertainty example specification is:
strategy, \
opt_under_uncertainty\
opt_method = ‘NLP1'\
nond_method = ‘LHS_MC’
A branch_and_bound example specification is:
strategy, \
branch_and_bound\
opt_method = ‘NLP1'\
iterator_servers = 4
A single_method example specification is:

strategy, \
single_method\
method_pointer = ‘NLP1’

In addition to management of multiple iterators and models, the strategy layer manages the
division of operations between master and slave processors. Refer to Exploiting Parallelism on
page 99 for additional details.

Specification

The strategy specification has the following structure:
strategy, \
<single_method> or <multi_level> or <seq_approximate opt>
or
<opt_under_uncertainty> or <branch_and_bound>
Referring to the IDR Input Specification File on page 112, it is evident that the five strategy
specificationsrfulti_level , Seq_approximate_opt , opt_under_uncertainty ,

User’s Instructions Strategy Commands - Specification 151

branch_and_bound , orsingle_method) are required groups (enclosing in parentheses)
separated by OR’s. Thus, one and only one strategy specification must be provided.

The various strategy specifications identify the methods and models (or more specifically,
interfaces) that will be employed in the strategy as well as controls for interaction (e.g.,

switching) between the methods and models. The methods and models are specified using string
pointers that correspond to identifier strings in the method and interface specifications (such as
‘methodl’ or ‘interfacel’). They should NOT be confused with method selections (such as
dot_mmfd) or interface types (such application). The following sections describe each

of these strategy specifications in additional detail.

Single Method Commands

Thesingle_method strategy may be specified using thegle_method keyword by

itself, or an optionamnethod_pointer may additionally be used to point to a particular

method. For examplepethod_pointer = ‘NLP1’ points to the method whose

specification containsl_method = ‘NLP1’ . If method_pointer s not used, then the

last method specification parsed will be used as the iterator. Invoking this default behavior is
most appropriate if only one method specification is present since there is no potential source of
confusion in this case. Table 28 summarizesthgle _method strategy inputs.

Table 28 Specification detail for single_method strategies
Description Specification Sample Status Default
Single method ({single_method} ...) single_method Required | N/A
strategy group
Method pointer [method_pointer = method_pointer = Optional use of last
<STRING>] ‘NLP1’ method
parsed

Refer to Single Method on page 71 for an overview osthgle_method objects and
algorithm logic.

Multilevel Hybrid Optimization Commands

Themulti_level hybrid optimization strategy has uncoupled, uncoupled adaptive, and
coupled approaches (see Multilevel Hybrid Optimization on page 71 for more information on the
algorithms employed). In the two uncoupled approaches, a list of method strings supplied with
themethod_list specification specifies the identity and sequence of iterators to be used. Any
number of iterators may be specified. The uncoupled adaptive approach may be specified by
turning on theadaptive flag. If theadaptive flag in specified, then

progress_threshold must also be specified since it is a required part of the optional group

User’s Instructions Strategy Commands - Single Method Commands 152

specification. In the nonadaptive case, method switching is managed through the separate
convergence controls of each method. In the adaptive case, however, method switching occurs
when the internal progress metric (normalized between 0.0 and 1.0) falls below the user specified
progress_threshold . Table 29 summarizes the uncouphedlti _level strategy inputs.

Table 29 Specification detail for uncoupled multi_level strategies
Description Specification Sample Status Default

Multi-level ({multi_level}...) multi_level Required N/A

strategy group

uncoupled ({uncoupled} ...) uncoupled Required | N/A

approach group

adaptive control [{adaptive} adaptive, Optional no adaptive
{progress_threshold = progress_threshold = | group control
<REAL>}] 0.5

List of methods {method_list = <LISTof>| method_list = ‘GAl’, | Required N/A
<STRING} ‘CPST’, ‘NLPY

In the coupled approach, global and local method strings supplied wiglotied_method
specifications identify the two methods to be used. The

andlocal_method

local_search_probability

setting is as optional specification for supplying the

probability (between 0.0 and 1.0) of employing local search to improve estimates within the

global search. Table 30 summarizes the couplelti_level

strategy inputs.

Table 30 Specification detail for coupled multi_level strategies
Description Specification Sample Status Default

Multi-level ({multi_level} ...) multi_level Required N/A

strategy group

coupled approach| ({coupled}...) coupled Required | N/A

group

Global method {global_method = global_method = Required N/A
<STRING>} ‘GAL’

Local method {local_method = local_method = Required N/A
<STRING>} ‘NLP1’

Local search [local_search_probability | local_search_probabj Optional 0.1

probability = <REAL>] lity = 0.5

In either the uncoupled or coupled case, each of the methods listed is responsible for cross-
referencing its own variables, interface, and responses specifications (using
, andresponses_pointer
Independent Controls on page 158) within its method specification.

interface_pointer

User’s Instructions

, variables_pointer

: see Method

Strategy Commands - Multilevel Hybrid Optimization Commands

153

Sequential Approximate Optimization Commands

Theseq_approximate opt strategy must specify an iterator uso_method , an

approximate interface usirgpproximate_interface , and an application interface using
actual_interface . The method specification identified bpt_method is responsible for
pointing to the variables and responses specifications that will be used by both interfaces (using
variables_pointer andresponses_pointer ; see Method Independent Controls on
page 158). Table 31 summarizes $leg_approximate_opt strategy inputs.
Table 31 Specification detail for seq_approximate_opt strategies
Description Specification Sample Status Default

Sequential ({seq_approximate_opt} ...| seq_approximate_opt Required | N/A

approximate) group

optimization

strategy

Optimization {opt_method = opt_method = ‘NLP1’ Required N/A

method <STRING>}

Approximate {approximate_interface = | approximate_interface =| Required N/A

interface <STRING>} ‘resp_surf’

Actual interface {actual_interface = actual_interface = Required N/A

<STRING>} ‘simulation’

Refer to Sequential Approximate Optimization on page 74 for an overview of the
seq_approximate_opt objects and algorithm logic.

Optimization Under Uncertainty Commands

Theopt_under_uncertainty strategy must specify an optimization iterator using
opt_method and a nondeterministic iterator usingnd_method . The method specifications
identified byopt_method andnond_method are responsible for pointing to the variables,
interface, and responses specifications to be used by these methods (using

interface_pointer , variables_pointer , andresponses_pointer ; see Method
Independent Controls on page 158). Since optimization and nondeterministic iteration use very
different types of data, the variables, interface, and responses specifications used by these

methods will often be distinct. Table 32 summarizesoffteunder_uncertainty strategy
inputs.
Table 32 Specification detail for opt_under_uncertainty strategies
Description Specification Sample Status Default
Optimization under ({opt_under_uncertainf opt_under_uncertai Required N/A
uncertainty strategy v}...) nty group

User’s Instructions Strategy Commands - Sequential Approximate Optimization Commands 154

Table 32 Specification detail for opt_under_uncertainty strategies

Description Specification Sample Status Default
Optimization method {opt_method = opt_method = Required N/A
<STRING>} ‘NLP1’
Nondeterministic {nond_method = nond_method = Required N/A
method <STRING>} ‘LHS_MC’

Refer to Optimization Under Uncertainty on page 75 for an overview of the
opt_under_uncertainty objects and algorithm logic.

Branch and Bound Commands

Thebranch_and_bound strategy must specify an iterator usog_method and the

number of concurrent iterator servers ustegator_servers . The method specification
identified byopt_method is responsible for pointing to the variables, interface, and responses
specifications that will be used by the method (usiteyface_pointer ,

variables_pointer , andresponses_pointer ; see Method Independent Controls on
page 158). Table 33 summarizes ihench_and_bound strategy inputs.
Table 33 Specification detail for branch_and_bound strategies
Description Specification Sample Status Default

Branch and bound| ({branch_and _bound}...)| branch_and_bound Required N/A

strategy group

Optimization {opt_method = opt_method = ‘NLPY’ Required N/A

method <STRING>}

Concurrentiterator| {iterator_servers = iterator_servers = 4 Required N/A

servers <INTEGER>}

Refer to Branch and Bound on page 76 for an overview dirdrech_and _bound objects
and algorithm logic.

User’s Instructions Strategy Commands - Branch and Bound Commands 155

Method Commands

Description

The method section in a DAKOTA input file specifies the name and controls of an iterator. The
terms “method” and “iterator” can be used interchangeably, although method usually refers to an
input specification whereas iterator usually refers to an object withiDaketalterator

hierarchy. A method specification, then, is used to select an iterator from the iterator hierarchy
(see Ilterator and Strategy Hierarchies on page 52), which includes optimization, uncertainty
guantification, least squares, and parameter study iterators (see Capability Overview on page 59
for more information on these iterator branches). This iterator may be used alone or with other
iterators as dictated by the strategy specification (refer to Strategy Commands on page 150 for
strategy command syntax and to Strategy Capabilities on page 70 for strategy algorithm
descriptions).

Several examples follow. The first example shows a specification for an optimization method.

method,\
dot_sqgp\
id_method = ‘NLP1'\
variables_pointer = ‘V1'\
interface_pointer = ‘I1’\
responses_pointer = ‘R1’

This example demonstrates the use of identifiers and pointers. The method specification has been
tagged with the stringNLP1’ . This string can be used in a strategy specification to identify that
this method will be invoked by the strategy. Similarly, variables, interface, and responses
specifications which have been tagged elsewhere’'Mith , ‘11’ , and'‘R1’ strings are being
identified as the specifications that this method will use in its iteration. Note that this type of
tagging and cross-referencing is not needed when relationships among specifications are
unambiguous (due to the presence of only one specification). The next example shows a
specification for a least squares method.

method,\
optpp_g_newton\
convergence_tolerance = 1.e-8\
max_iterations = 10\
search_method, trust_region\
gradient_tolerance = 1.e-6

This example demonstrates some method independent and method dependent controls. The
convergence_tolerance andmax_iterations settings are method independent
controls, in that they are defined for a variety of methodss&hech_method and
gradient_tolerance settings are method dependent controls, in that they are only
meaningful for OPT++ methods. The next example shows a specification for a nondeterministic
iterator.

method,\

User’s Instructions Method Commands - Description 156

nond_probability\
observations = 100\
seed = 1\
sample_type, Ihs\
response_thresholds = 1000., 500.

Each of the nondeterministic method controls are method dependent controls. The last example
shows a specification for a parameter study iterator where, again, each of the controls are method

dependent.

method,\
parameter_study\
step_vector = 1.,1.,1.\
num_steps = 10

Specification

The method specification has the following structure:

method, \
<method independent controls>\
<method selection>\
<method dependent controls>

where<method selection> is one of the following:

dot_frcg, dot_mmfd, dot_bfgs, dot_slp, dot_sqgp, npsol_sqp,
optpp_cg, optpp_qg_newton, optpp_g_newton, optpp_newton,
optpp_fd_newton, optpp_baq_newton, optpp_ba_newton,
optpp_bcg_newton, optpp_bcg_newton, optpp_bc_newton,
optpp_bc_ellipsoid, optpp_pds, optpp_test_new,
sgopt_pga_real, sgopt_pga_int, sgopt_coord_ps,
sgopt_coord_sps, sgopt_solis_wets, sgopt_strat_mc,
nond_probability, nond_mean_value, vector_parameter_study,
list_parameter_study, centered_parameter_study,
multidim_parameter_study

The<method independent controls> are those controls which are valid for a variety

of methods. In some cases, these controls are abstractions which may have slightly different
implementations from one method to the next. ¥imethod dependent controls> are

those controls which are only meaningful for a specific method or library. Referring to the IDR
Input Specification File on page 112, thaethod independent controls> are those

controls defined externally from and prior to the method selection blocks. They are all optional.
The method selection blocks are all required group specifications separated by logical OR’s. The
<method dependent controls> are those controls defined within the method selection
blocks. The following sections provide additional detail on the method independent controls
followed by the method selections and their corresponding method dependent controls.

User’s Instructions Method Commands - Specification 157

Method Independent Controls

The method independent controls include a method identifier string, pointers to variables,
interface, and responses specifications, speculative gradient selection, output verbosity control,
linear constraint specification, convergence tolerance specification, and maximum iteration and
function evaluation limits. While each of these controls is not valid for every method, the
controls are valid for enough methods that it was reasonable to pull them out of the method
dependent blocks and consolidate the specifications.

The method identifier string is supplied with method and is used to provide a unique
identifier string for use with strategy specifications. It is appropriate to omit a method identifier
string if only one method is included in the input file amyle_method s the selected
strategy, since the binding of a strategy to a method is unambiguous in this case.

Theinterface_pointer , variables_pointer , andresponses_pointer

specifications in the method keyword provide strings for cross-referencing with the

id_interface , id_variables , andid_responses string inputs from the interface,
variables, and responses keyword specifications. These pointers identify which specifications will
be used by a particular method for its mapping of variables into responses through an interface. If
a pointer string is specified and no corresponding id is available, an error message will be
printed. If no pointer string is specified, the last specification parsed will be used. It is
appropriate to omit this cross-referencing whenever the relationships are unambiguous due to the
presence of only one specification. Since the method specification is responsible for cross-
referencing with the interface, variables, and responses specifications, identification of methods
at the strategy layer is often sufficient to completely specify all of the object interrelationships.

When performing gradient-based optimization in paratieéculative gradients can be

selected to address the load imbalance that can occur between gradient evaluation and line search
phases. In a typical synchronous analysis, the line search phase consists primarily of evaluating
the objective function and any constraints at a trial point, and then testing the trial point for a
sufficient decrease in the objective function value and/or constraint violation. If a sufficient
decrease is not observed, then one or more additional trial points may be attempted in series.
However, if the trial point is accepted then the line search phase is complete and the gradient
evaluation phase begins. By speculating that the gradient information associated with a given line
search trial point will be used later, additional coarse grained parallelism can be introduced
during an asynchronous analysis. This is achieved by computing the gradient information, either
by finite difference or analytically, in parallel, at the same time as the line search phase trial-point
function values. This balances the total amount of computation to be performed at each design
point and allows for efficient utilization of multiple processors. While the total amount of work
performed will generally increase (since some speculative gradients will not be used when a trial
point is rejected in the line search phase), the run time will usually decrease (since gradient
evaluations needed at the start of each new optimization cycle were already performed in parallel
during the line search phase). Refer to [Byrd, R.H., Schnabel, R.B., and Schultz, G.A., 1988] for
additional details. Thepeculative specification is implemented for the gradient-based

User’s Instructions Method Commands - Method Independent Controls 158

optimizers in the DOT, NPSOL, and OPT++ libraries, and it can be usedatkitha

numerical oranalytic gradient selections in the responses specification (see Gradient
specification on page 146). It should not be selectedwsitdor numerical gradients since
vendor internal finite difference algorithms have not been modified for this purpose. In full-
Newton approaches, the Hessian is also computed speculatively.

Output verbosity control is specified withitput ~ followed by eitheverbose or quiet

This control is mapped into each iterator to manage the volume of data that is returned to the user
during the course of the iteration. Different iterators implement this control in slightly different
ways, however the meaning is consistent.

Linear constraint coefficients can be supplied withitiear_constraints list
specification. While many of DAKOTA's optimizers will eventually support specialized handling
of linear constraints, currently only the NPSOL library supports this feature. For all other
optimizers, linear constraints should be included within the more general
num_nonlinear_constraints count and returned on every function evaluation. For
NPSOL, linear constraints need not be computed by the user’s interface on every function
evaluation; rather the coefficients of the linear constraints can be provided to NPSOL at startup,
allowing NPSOL to track the linear constraints internally. Note that linear constraints are those
constraints that are linear in tbesign variablese.g.:

3X1 - 4x 2 <0.5

X1+Xx o 220

which is not to be confused with something like
o(X)- Oy <0

which is linear in a response quantity, but the response quantity is a nonlinear implicit function of
the design variables. For the linear constraints above, the specification would appear as:
linear_constraints = 3.0, -4.0, -0.5, -1.0, -1.0, 2.0

where the list in divided into individual constraints based on the number of continuous design
variables and according to the following assumed form (which was selected for consistency with
the nonlinear constraint assumed form @Ky < 0):

ajXp+a oXo+...t+ta nXpta g <0

Theconvergence_tolerance specification provides a real value for controlling the
termination of iteration. In most cases, it is a relative convergence tolerance for the objective
function; i.e., if the change in the objective function between successive iterations divided by the
previous objective function is less than the amount specifiediyergence_tolerance ,

then this convergence criterion is satisfied on the current iteration. Since no progress may be
made on one iteration followed by significant progress on a subsequent iteration, some libraries
require that theonvergence_tolerance be satisfied on two or more consecutive iterations
prior to termination of iteration. This control is most meaningful for optimization and least
squares iterators and is not currently implemented within the uncertainty quantification and
parameter study iterator branches. Refer to the DOT, NPSOL, OPT++, and SGOPT
specifications for the specific interpretatiorcohvergence_tolerance for these libraries.

User’s Instructions Method Commands - Method Independent Controls 159

Theconstraint_tolerance specification determines the maximum allowable value of
infeasibility that any constraint in an optimization problem may possess at termination. It is
specified as a positive real value. If a constraint function is greater than this value then it is
considered to be violated by the optimization algorithm. This specification gives some control
over how tightly the constraints may be satisfied at convergence of the algorithm. However, if the
value is set too small the algorithm may terminate with one or more constraints being violated.
This specification is currently meaningful for the NPSOL and DOT constrained optimizers.

Themax_iterations andmax_function_evaluations controls provide integer limits

for the maximum number of iterations and maximum number of function evaluations,
respectively. The difference between an iteration and a function evaluation is that a function
evaluation involves a single parameter to response mapping through an interface, whereas an
iteration involves a complete cycle of computation within the iterator. Thus, an iteration
generally involves multiple function evaluations (e.g., for descent direction and line search
computations in gradient-based optimization, population and multiple offset evaluations in
nongradient-based optimization, etc.). This control is not currently implemented within the
uncertainty quantification and parameter study iterator branches, and in the case of optimization
and least squares, does not currently capture function evaluations that occur as part of the
method_source dakota finite difference routine (since these additional evaluations are
intentionally isolated from the iterators). Table 34 provides the specification detail for the method
independent controls.

Table 34 Specification detail for the method independent controls

Description Specification Sample Status Default

Method set [id_method = id_method = ‘NLP1’| Optional strategy usage qf

identifier <STRING>] last method
parsed

Interface [interface_pointer = interface_pointer = | Optional method usage of

pointer <STRING>] ‘17’ last interface
parsed

Variables [variables_pointer = variables_pointer = | Optional method usage of

pointer <STRING>] V1’ last variables
parsed

Responses [responses_pointer = | responses_pointer = Optional method usage of

pointer <STRING>] ‘RY last responses
parsed

Speculative [speculative] speculative Optional standard

gradients and gradients and

Hessians Hessians

Output [{output} {verbose} | output verbose Optional | quiet

verbosity {quiet}] group

Linear [linear_constraints = linear_constraints = | Optional no linear

constraints <LISTof> <REAL>] 1.0, 2.0, 3.0 constraints

User’s Instructions Method Commands - Method Independent Controls 160

Table 34

Specification detail for the method independent controls

Description Specification Sample Status Default
Constraint [constraint_ constraint_ Optional Optimization
tolerance tolerance = <REAL> | tolerance = 1.e-4 code dependent
Convergence [convergence convergence_ Optional l.e4
tolerance tolerance = <REAL>] | tolerance = 1.e-5
Maximum [max_iterations = max_iterations = 10| Optional 100
iterations <INTEGER>]

Maximum [max_function_ max_function_ Optional 1000
function evaluations = evaluations =200
evaluations <INTEGER>]

Developer’s notesdefaults for method independent and method dependent controls are defined in Dakota/src/
DataMethod.C.

DOT Methods

The DOT library [Vanderplaats Research and Development, 1995] contains nonlinear
programming optimizers, specifically the Broyden-Fletcher-Goldfarb-Shanno (Dakota’s
dot_bfgs method) and Fletcher-Reeves conjugate gradient (Daklmib’é'cg method)
methods for unconstrained optimization, and the modified method of feasible directions
(Dakota’sdot_mmfd method), sequential linear programming (Dakatd®t slp method),
and sequential quadratic programming (Dakadas sqp method) methods for constrained
optimization. DAKOTA implements the DOT library within tBEOTOptimizer class.

Method independent controls

The method independent controls foax_iterations and

max_function_evaluations limit the number of major iterations and the number of
function evaluations that can be performed during a DOT optimization. The
convergence_tolerance control defines the threshold value on relative change in the
objective function that indicates convergence. This convergence criterion must be satisfied for
two consecutive iterations before DOT will terminate. Thestraint_tolerance

specification defines how tightly constraint functions are to be satisfied at convergence. The
default value for DOT constrained optimizer9i803 . Extremely small values for
constraint_tolerance may not be attainable. Tlatput verbosity specification

controls the amount of information generated by DOTqgtiet setting results in header
information, final results, and objective function, constraint, and parameter information on each
iteration; whereas theerbose setting adds additional information on gradients, search
direction, one-dimensional search results, and parameter scaling factors. DOT contains no
parallel algorithms which can directly take advantage of asynchronous evaluations. However, if

User’s Instructions Method Commands - DOT Methods 161

numerical_gradients with method_source dakota is specified, then an

asynchronous interface specification will trigger the use of asynchronous evaluations for the
finite difference function evaluations. In additionspfeculative is specified, then gradients
(dakota numerical oranalytic gradients) will be computed on each line search

evaluation in order to balance the load and lower the total run time in parallel optimization
studies. Lastly, specialized handlingliokar_constraints is not supported with DOT;

linear constraints should be included within tlien_nonlinear_constraints count and
returned on every function evaluation. Specification detail for these method independent controls
is provided in Table 34.

Developer’s notesmax_iterations , max_function_evaluations , convergence_tolerance ,and
output verbosity are implemented withOTOptimizer as follows:max_iterations is mapped into DOT’s
ITMAX parameter within itlPRM array;max_function_evaluations is implemented directly in the
DOTOptimizer::find_optimum loop since there is no DOT parameter equivaleatijvergence_tolerance is
mapped into DOT'®ELOBJparameter (the relative convergence tolerance) withRRRMarray; andutput
verbosity is mapped into DOTI®RINT parameter within its function call parameter list (verbéBRINT = 7;
quiet:IPRINT = 3). Refer to [Vanderplaats Research and Development, 1995] for informatitRivi RPRMand
the DOT function call parameter list.

Method dependent controls

DOT’s only method dependent controbigtimization_type which may be either

minimize ormaximize . DOT has the only methods within DAKOTA which provide this
control; to convert a maximization problem into the minimization formulation assumed by other
methods, simply change the sign on the objective function (i.e., multiply by -1). Table 35
provides the specification detail for the DOT methods and their method dependent controls.

Table 35 Specification detail for the DOT methods

Description Specification Sample Status Default

DOT method ({dot_bfgs}...) | (dot_sqp Required N/A
{dot_frcg} ...) | (group
{dot_mmfd}...) | (
{dot_sIp}...) | (
{dot_sqgp} ...)

Optimization type| [{optimization_type} optimization_type, | Optional minimize
{minimize} | minimize group
{maximize}]

Developer’'s notesoptimization_type is mapped into DOT'MINMAXparameter within its function call

parameter list.

NPSOL Method

The NPSOL library [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986] contains a
sequential quadratic programming (SQP) implementatiomftkel_sgp method). SQP is a

User’s Instructions Method Commands - NPSOL Method 162

nonlinear programming optimizer for constrained minimization. DAKOTA implements the
NPSOL library within theNPSOLOptimizer class.

Method independent controls

The method independent controls foax_iterations and

max_function_evaluations limit the number of major SQP iterations and the number of
function evaluations that can be performed during an NPSOL optimization. The
convergence_tolerance control defines NPSOL'’s internal optimality tolerance which is
used in evaluating if an iterate satisfies the first-order Kuhn-Tucker conditions for a minimum.
The magnitude ofonvergence_tolerance approximately specifies the number of
significant digits of accuracy desired in the final objective function (e.g.,
convergence_tolerance = 1.e-6 will result in approximately six digits of accuracy in
the final objective function). Theonstraint_tolerance control defines how tightly the
constraint functions are satisfied at convergence. The default value is dependent upon the
machine precision of the platform in use, but is typically on the ordeee8 for double
precision computations. Extremely small valuescfamstraint_tolerance may not be
attainable. Theutput verbosity setting controls the amount of information generated at each
major SQP iteration: thguiet setting results in only one line of diagnostic output for each
major iteration and prints the final optimization solution, whereasgdt®se setting adds
additional information on the objective function, constraints, and variables at each major
iteration.

NPSOL is not a parallel algorithm and cannot directly take advantage of asynchronous
evaluations. However, iiumerical_gradients with method_source dakota is

specified, amsynchronous interface specification will trigger the use of asynchronous
evaluations for the finite difference function evaluations. An important related observation is the
fact that NPSOL uses two different line searches depending on how gradients are computed. For
eitheranalytic_gradients or numerical_gradients with method_source

dakota , NPSOL is placed in user-supplied gradient mode (NPSOL's “Derivative Level” is set

to 3) and it uses a gradient-based line search (presumably since it assumes that the user-supplied
gradients are inexpensive). On the other hamtynfierical_gradients are selected with
method_source vendor , then NPSOL is computing finite differences internally and it will

use a value-based line search (presumably since it assumes that finite differencing on each line
search evaluation is too expensive). The ramifications of this are: (1) performance will vary
betweemmethod_source dakota andmethod_source vendor for

numerical_gradients , and (2) gradient speculation is unnecessary when performing
optimization in parallel since the gradient-based line search in user-supplied gradient mode is
already load balanced for multiple processor execution. Therefspecalative

specification will be ignored by NPSOL, and optimization with numerical gradients should select
method_source dakota for load balanced parallel operation andthod_source

vendor for efficient serial operation.

User’s Instructions Method Commands - NPSOL Method 163

Lastly, NPSOL supports specialized handling of linear constraints with the

linear_constraints list specification. By specifying the coefficients of the linear
constraints, this information can be provided to NPSOL at initialization and tracked internally,
removing the need for the user to provide the values of the linear constraints on every function
evaluation. Refer to Method Independent Controls on page 158 for additional information and to
Table 34 for method independent control specification detail.

Developer’'s notesmax_iterations , max_function_evaluations , convergence_tolerance , and
output verbosity are implemented withMPSOLOptimizer as follows:max_iterations is mapped into
NPSOL's"Major Iteration Limit” parameter using itSPOPTNoutine;

max_function_evaluations is implemented directly iNPSOLOptimizer’s evaluator functions since there
is no NPSOL parameter equivalecbnvergence_tolerance is mapped into NPSOL"*Optimality

Tolerance” parameter using the NPOPTN routioeitput verbosity is mapped into NPSOL“BMajor Print
Level” parameter usingthe NPOPTN routive(bose : Major Print Level =20;quiet :Major Print
Level = 10). Refer to [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986] for information on
NPSOL's optional input parameters and the NPOPTN subroutine.

Method dependent controls

NPSOL's method dependent controls eeefy level , function_precision , and
linesearch_tolerance . Theverify_level control instructs NPSOL to perform finite
difference verifications on user-supplied gradient componentduiib8on_precision

control provides NPSOL an estimate of the accuracy to which the problem functions can be
computed. This is used to prevent NPSOL from trying to distinguish between function values
that differ by less than the inherent error in the calculation. And the

linesearch_tolerance setting controls the accuracy of the line search. The smaller the
value (between 0 and 1), the more accurately NPSOL will attempt to compute a precise
minimum along the search direction. Table 36 provides the specification detail for the NPSOL
SQP method and its method dependent controls.

Table 36 Specification detail for the NPSOL SQP method

Description Specification Sample Status Default

NPSOL's SQP ({npsol_sqp} ...) npsol_sqgp Required | N/A

method group

Verify level [verify level = verify level = -1 Optional -1 (no gradient

<INTEGER>] verification)

Function [function_precision = function_precision| Optional l.e-10

precision <REAL>] =1.e-6

Line search [linesearch_tolerance =| linesearch_toleran| Optional 0.9 (inaccurate line

tolerance <REAL>] ce=04 search)
Developer’s notesrerify _level , function_precision , andlinesearch_tolerance are mapped
into NPSOL's"Verify Level” , “Function Precision” and“Linesearch Tolerance” parameters,

respectively, using NPSOLMPOPTNoutine. Refer to [Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H.,
1986] for additional information on these controls.

User’s Instructions Method Commands - NPSOL Method 164

OPT++ Methods

The OPT++ library [Meza, J.C., 1994] contains primarily nonlinear programming optimizers for
unconstrained minimization: Polak-Ribiere conjugate gradient (DAKO@pipp_cg method),
guasi-Newton, barrier function quasi-Newton, and bound constrained quasi-Newton (DAKOTA's
optpp_q_newton ,optpp_bag_newton , andoptpp_bcq_newton methods), Gauss-
Newton and bound constrained Gauss-Newton (DAKO®A®pp g newton and
optpp_bcg_newton methods - part of DAKOTAs nonlinear least squares branch), full
Newton, barrier function full Newton, and bound constrained full Newton (DAKOTA's
optpp_newton , optpp_ba_newton , andoptpp_bc_newton methods), finite difference
Newton (DAKOTAsoptpp_fd_newton method), and bound constrained ellipsoid

(DAKQOTA's optpp_bc_ellipsoid method). The library also contains a directed search
algorithm, PDS (parallel direct search, DAKOTApBtpp_pds method), and an input place
holder for new algorithm testing (DAKOTAGptpp_test new method). DAKOTA

implements the OPT++ library within tHeNLLOptimizer class, where “SNLL” denotes Sandia
National Laboratories - Livermore.

Method independent controls

The method independent controls foax_iterations and

max_function_evaluations limit the number of major iterations and the number of
function evaluations that can be performed during an OPT++ optimization. The
convergence_tolerance control defines the threshold value on relative change in the

objective function that indicates convergence. dtput verbosity specification controls the
amount of information generated by OPT++: theet setting corresponds to turning OPT++’s
internal debug mode off, whereas tregbose setting turns debug mode on. OPT++’s gradient-
based methods are not parallel algorithms and cannot directly take advantage of asynchronous
evaluations. However, ifumerical_gradients with method_source dakota IS

specified, amsynchronous interface specification will trigger the use of asynchronous
evaluations for the finite difference gradient computations. OPT++'s nongradient-based PDS
method can directly exploit asynchronous evaluations; however, this capability has not been
implemented within DAKOTA V1.1.

Thespeculative specification enables speculative computation of Hessian and/or gradient
information, where applicable, for load balancing purposes. The specification is applicable to the
computation of gradient information in cases wlieust_region or

value_based_line_search methods can be applied. See the OPT++ Method dependent
controls on page 162 for a descriptiorvafue _based_line_search and

trust_region methods. Thepeculative specification must be used in conjunction with
dakota numerical oranalytic gradients. The specification is ignored and a warning
message is printed for gradient computations whgnadient_based_line_search is

used, or when theptpp_ba_ newton , optpp_bag _newton oroptpp_bc_ellipsoid

User’s Instructions Method Commands - OPT++ Methods 165

methods are used. The speculative specification can also be applied to the full Newton methods,
which require computation @halytic hessians, or for theoptpp_fd_newton

method However, the specification is ignored for tEpp_g_newton Hessian

computation, which approximates the Hessian from function and gradient values.

Lastly, specialized handling bhear_constraints is not supported with OPT++; many
OPT++ methods must be unconstrained and some can handle bound constraints. Specification
detail for these method independent controls is provided in Table 34.

Developer’s noteswithin the SNLLOptimizer classmax_iterations , max_function_evaluations ,and
convergence_tolerance are set using OPT++SetMaxlter , SetMaxFeval , andSetFcnTol member
functions, respectivelygutput verbosity is used to toggle OPT++’s debug mode usin§¢tieebug member

function. Refer to [Meza, J.C., 1994] and to the OPT++ source in the Dakota/VendorOptimizers/opt++ directory for
information on OPT++ class member functions.

Method dependent controls

OPT++'s method dependent controls ar@x_step , gradient_tolerance ,

search_method |, initial_radius , andsearch_scheme_size . Themax_step

control specifies the maximum step that can be taken when computing a change in the objective
function iterate (e.g., limiting the Newton step computed from current gradient and Hessian
information). It is equivalent to a move limit or a maximum trust region size. The
gradient_tolerance control defines the threshold value on the L2 norm of the objective
function gradient that indicates convergence to an unconstrained minimum (no active bound
constraints). Thgradient_tolerance control is defined for all gradient-based optimizers.

Thesearch_method control is defined for all Newton-based optimizers and is used to select
betweertrust_region, gradient_based_line_search, and

value _based_line_search methods. Thenax_step control is applicable wherever one

of the abovesearch_method techniques is used. Thmist_region search method is the
default for all methods except ellipsoid, barrier, and bound-constrained methods. The ellipsoid
and barrier methods use built-in directional searches, and thus, the searali_method

control does not apply. The use of trust region techniques for the bound-constrained methods is
an open research issue, and currentlyittee search method is the default. The

initial_radius control is defined for the ellipsoid method to specify the initial radius of the
ellipsoid, andsearch_scheme_size s defined for the PDS method to specify the number of
points tospeculative gradient specification be used in the direct search template.

Table 37, Table 38, Table 39, Table 40, Table 41, and Table 42 provide the specification detail for
the OPT++ methods and their method dependent controls. Table 37 covers the OPT++ conjugate
gradient method specification. Table 38 provides the detail for all of the unconstrained and
bound-constrained Newton-based methods. Table 39 provides the detail for barrier Newton
methods. Table 40 provides the detail for the bound constrained ellipsoid method. Table 41
provides the detail for the parallel direct search method. And Table 42 provides the specification
detail for OPT++ new method testing.

User’s Instructions Method Commands - OPT++ Methods 166

Table 37 Specification detail for the OPT++ conjugate gradient method
Description Specification Sample Status Default
OPT++'s ({optpp_cg} ...) optpp_cg Required N/A
conjugate group
gradient method
Maximum step | [max_step = <REAL>] | max_step = 1000. Optional 1000.
size
Gradient [gradient_tolerance = | gradient_tolerance = Optional 0.0001
tolerance <REAL>] 0.0001
Table 38 Specification detail for unconstrained and bound-constrained
Newton-based OPT++ methods
Description Specification Sample Status Default

OPT++ Newton- | ({optpp_g_newton}...) | optpp_g_ne | Required N/A

based methods | ({optpp_g_newton}...) | wton group
({optpp_newton} ...) |
({optpp_fd_newton} ...) |
({optpp_bc_newton} ...) | (

{optpp_bcqg_newton}...) | (
{optpp_bcg_newton} ...)

Search method [{search_method} search_meth| Optional line_search
{value_based_line_search}| od, group for bc
{gradient_based_line_searh}| value_based methods,
{trust_region}] _line_search trust_region

for others

Maximum step | [max_step = <REAL>] max_step =| Optional 1000.

size 1000.0

Gradient [gradient_tolerance = <REAL>] gradient_toleOptional 0.0001

tolerance rance =

0.0001
Table 39 Specification detail for barrier-constrained Newton OPT++
methods
Description Specification Sample Status Default

OPT++ barrier ({optpp_ba_newton} ...) | (optpp_ba_ne| Required N/A

Newton methods| {optpp_bag_newton} ...) wton group

Gradient [gradient_tolerance = <REAL>] gradient_toleOptional 0.0001

tolerance rance =

0.0001

User’s Instructions

Method Commands - OPT++ Methods

Table 40 Specification detail for the OPT++ bound constrained ellipsoid
method
Description Specification Sample Status Default
OPT++’s bound | ({optpp_bc_ellipsoid} ...) optpp_bc_ellipsoid Required | N/A
constrained group
ellipsoid
Initial radius [initial_radius = <REAL>] initial_radius = Optional 1000.
1000.0
Maximum step | [max_step = <REAL>] max_step = 1000. Optional 1000.
size
Gradient [gradient_tolerance = <REAL>| gradient_tolerancg Optional 0.0001
tolerance =0.0001
Table 41 Specification detail for the OPT++ PDS method
Description Specification Sample Status Default
OPT++’s Parallel | ({optpp_pds}...) optpp_pds Required | N/A
Direct Search group
Search scheme [search_scheme_size = | search_scheme_siz¢ Optional 32
size <INTEGER>] =32
Table 42 Specification detail for OPT++ new method testing
Description Specification Sample Status Default
Placeholder for new {optpp_test_new} optpp_test_new Required N/A
OPT++ method testing
Developer’'s notesmax_step , gradient_tolerance ,search_method |, initial_radius , and
search_scheme_size are set using OPT++SetMaxStep , SetGradTol , SetSearchStrategy

SetlnitialEllipsoid , andSetSSS member functions, respectively. Refer to [Meza, J.C., 1994] and to the
OPT++ source in the Dakota/VendorOptimizers/opt++ directory for information on OPT++ class member functions.

SGOPT Methods

The SGOPT (Stochastic Global OPTimization) library [Hart, W.E., 1997] contains a variety of
global optimization algorithms, with an emphasis on stochastic methods. SGOPT currently
includes the following global optimization methods: genetic algorittsgpept_pga _real
sgopt_pga_int) and stratified Monte Carlegopt_strat_ mc). Evolutionary pattern

search algorithms, simulated annealing, tabu search, and multistart local search (to become part
of DAKOTA's coupled multi_level strategy) are global methods which are under
development but are not available in DAKOTA V1.0. Additionally, SGOPT includes several local

User’s Instructions Method Commands - SGOPT Methods 168

search algorithms such as Solis-Wetgopt_solis_wets) and deterministic and stochastic
coordinate pattern searcdgppt_coord_ps andsgopt coord _sps). DAKOTA
implements the SGOPT library within t8&OPTOptimizer class.

Developer’s notesTo specify method controls and options, DAKOTA§&OPTOptimizer class instantiates SGOPT
method interface objects (e.tRGAreal is an interface class to tR&Areal optimizer class). The purpose of these
interface classes is to simplify the communication of information from driver programs (e.g., DAKOTA) to the
SGOPT optimizer classes. This information transfer occurs through the passing of string data psitgske
member function available in the interface classes. For example, the command

baseOptimizerinterface->process(“debug”, “5");
uses a pointer to an optimizer interface objpas€Optimizerinterface) to set thedlebug data structure

within the interface object’s corresponding optimizer class to the integer 5.

Method independent controls

The method independent controls foax_iterations and

max_function_evaluations limit the number of major iterations and the number of
function evaluations that can be performed during an SGOPT optimization. The
convergence_tolerance control defines the threshold value on relative change in the

objective function that indicates convergence. dtput verbosity specification controls the
amount of information generated by SGOPT:db&t setting corresponds to a low level of
diagnostics reported only on those iterations for which improvement in the objective is observed,
whereas the@erbose setting corresponds to a higher level of diagnostics reported on every
iteration. Many of SGOPT’s nongradient-based methods have independent function evaluations
that can directly take advantage of DAKOTA's parallel capabilities. The following methods
currently support concurrent function evaluatisgopt_pga_real , sgopt_pga_int
sgopt_strat mc , sgopt_coord_ps , andsgopt_coord_sps . This methods

automatically utilize asynchronous logic when utilizing multiple processors of when specifying
anasynchronous interface. Note that parallel usagesgbpt_coord_ps or

sgopt_coord_sps overrides any setting faxploratory _moves (see Coordinate pattern
search (CPS) on page 172), sincestamdard , offset , best_first , and

biased best_first settings only involve relevant distinctions for the case of serial
operation. Lastly, neithespeculative gradients nor specialized handling of
linear_constraints are supported with SGOPT since SGOPT methods are unconstrained

and nongradient-based. Specification detail for method independent controls is provided in Table
34.

Developer’'s notesmax_iterations , max_function_evaluations , convergence_tolerance , and

output verbosity are implemented withBGOPTOptimizer as follows:max_iterations is mapped into
SGOPT'smax_iters data attribute using tigrocesscommand available in SGOPT's interface classes;
max_function_evaluations is mapped intonax_neval usingprocess convergence_tolerance is

mapped intdtol usingprocess output verbosity is mapped inftebug anddynamic_debug settings using
process(verbose :thedebug level is setto 5 and theéynamic_debug flag is not setguiet :thedebug level

is set to 0 and thedynamic_debug flag is turned on). Théynamic_debug flag determines whether results are
reported on every iteration (off) or only on those iterations for which improvement in the objective is observed (on).
SGOPT methods assume asynchronous operations whenever the algorithm has independent evaluations which can be
performed simultaneously (implicit parallelism). Therefore ah@luations asynchronous control is not

mapped into the method (excepti@mcase is set to 3 usingrocessfor asynchronous coordinate pattern searches),

User’s Instructions Method Commands - SGOPT Methods 169

rather it is used iIBGOPTRealApplication andSGOPTIntApplication to control whether or not an asynchronous
evaluation request from the method is honored by the model. Refer to [Hart, W.E., 1997] for additional information
on SGOPT objects and controls.

Method dependent controls

solution_accuracy andmax_cpu_time are method dependent controls which are

defined for all SGOPT methods. Solution accuracy defines a convergence criterion in which the
optimizer will terminate if it finds an objective function value lower than the specified accuracy.
Note that the default of 1.e-5 should be overridden in those applications where it could cause
premature termination. The maximum CPU time setting is another convergence criterion in
which the optimizer will terminate if its CPU usage in seconds exceeds the specified limit. Table
43 provides the specification detail for these method dependent controls.

Table 43 Specification detail for SGOPT method dependent controls

Description Specification Sample Status Default
Solution [solution_accuracy = solution_accuracy = 0.0 Optional l.e-5
Accuracy <REAL>]

Maximum CPU [max_cpu_time = <REAL>] max_cpu_time = 86400.0 Optional No limit
Time
Developer’s notessolution_accuracy andmax_cpu_time are passed into SGOPT’s optimizers using

processwith identifiers ofacc andtime , respectively.

Each SGOPT method supplements the settings of Table 43 with controls which are specific to its
particular class of method. Genetic algorithms have additional settings for random seed,
population size, selection pressure, replacement, crossover, and mutation. Coordinate pattern
search algorithms have additional settings for random seed (stochastic pattern search only),
expansion policy, number of successes before expansion, expansion and contraction exponents,
initial and threshold deltas, and exploratory moves selection. Solis-Wets has additional settings
for random seed, number of successes before expansion, number of failures before contraction,
and initial and threshold rho settings. And lastly, stratified Monte Carlo has additional settings
for random seed and parameter space partitioning.

Genetic algorithms (GAS)

DAKOTA currently implements two types of GAs: a real-valued Ggopt pga real)and

an integer-valued GAs@opt_pga_int). Most controls for these two methods are the same,
although their crossover and mutation controls have slight differences. Table 44 provides the
specification detail for the controls which are common between the two GAs.

User’s Instructions Method Commands - SGOPT Methods 170

Table 44

Specification detail for the SGOPT GA methods

[new_solutions_generated =
<INTEGER>]]

new_solutions_geners
ed=5

1

Description Specification Sample Status Default
GA methods ({sgopt_pga_real} ...) | (sgopt_pga_real Required | N/A
{sgopt_pga_int}...) group
Random seed [seed = <INTEGER>] seed=1 Optional 1
population size [population_size = population_size = 10 Optional 100
<INTEGER>]
selection [{selection_pressure} {rank = | selection_pressure, | Optional proportion
pressure <REAL>} | {proportional}] rank = 2.0 group al
replacement typg [{replacement_type}{random}replacement_type Optional ??7?
| {CHC} | {elitist} elitist, group

The randonseed control provides a mechanism for making a stochastic optimization
repeatable. For example, even though many of the processes within a genetic algorithm have
random character, the use of the same random seed in identical studies will generate identical
results. This, of course, implies that generating meaningful statistics on GA performance will
require the user to vary the random seed on multiple rungpdphdation_size
specifies how many individuals will comprise the GA's population. The

selection_pressure

process of selecting “parents” for crossover. fidg@acement_type
populations and newly generated individuals are combined into a new population.

Table 45 and Table 46 show the crossover and mutation controls which differ between

sgopt_pga_real

andsgopt_pga_int

control

controls how strongly differences in fithess are weighted in the
controls how current

Table 45 Specification detail for SGOPT real GA crossover and mutation
Description Specification Sample Status Default
crossover type [{crossover_type} crossover_type Optional two_point
{two_point} | {mid_point} | | mid_point, group crossover
{blend} | {uniform} crossover_rate = 0.6 with rate =
[crossover_rate = <REAL>]] 0.8
mutation type [{mutation_type} (mutation_type Optional ?2?7?
{normal} [std_deviation = normal, group
<REAL>]) | {interval} | dimension_rate = 0.8
{cauchy} [dimension_rate =
<REAL>] [population_rate =
<REAL>]]

User’s Instructions

Method Commands - SGOPT Methods

171

Table 46 Specification detail for SGOPT integer GA crossover and

mutation
Description Specification Sample Status Default
crossover type [{crossover_type} crossover_type Optional two_point
{two_point} | {uniform} uniform, group crossover
[crossover_rate = crossover_rate = 0.6 with rate =
<REAL>]] 0.8
mutation type [{mutation_type} {offset} | mutation_type offset,| Optional ?7?7?
| {interval} dimension_rate = 0.8 group
[dimension_rate =
<REAL>][population_rate
= <REAL>]]

Thecrossover_type controls what approach is employed for combining parent genetic
information to create offspring, and tbessover_rate specifies the probability of a
crossover operation being performed to generate a new offspringadthgon_type

controls what approach is employed in randomly modifying design variables within the GA
population. The associat@dpulation_rate controls the probability of mutation being
performed on a particular individual, and if it is to be performed on an individual, the
dimension_rate is used to govern the probability of mutation per design variable for the
individual.

Coordinate pattern search (CPS)

DAKOTA implements two types of CPS: a deterministic C&pt_coord_ps)anda

stochastic CPS¢opt_coord_sps). Their controls are identical except that the stochastic

CPS specification contains a random seed whereas the deterministic CPS specification does not.
Table 47 provides the specification detail for SGOPT CPS methods and their method dependent
controls.

Table 47 Specification detail for the SGOPT CPS methods

Description Specification Sample Status Default

CPS methods ({sgopt_coord_ps}...) | (sgopt_coord_ps Required | N/A
{sgopt_coord_sps} ...) group

Random seed [seed = <INTEGER>] seed =1 Optional 1

(stochastic only)

expansion policy| [{expansion_policy} {unlimited}| expansion_policy| Optional unlimited
| {once}] once group

expand after [expand_after_success = expand_after_sug Optional 1

success <INTEGER>] cess=2

expansion [expansion_exponent = expansion_expon| Optional 0

exponent <INTEGER>] ent=1

User’s Instructions Method Commands - SGOPT Methods 172

Table 47 Specification detail for the SGOPT CPS methods

Description Specification Sample Status Default
contraction [contraction_exponent = contraction_expo| Optional -1
exponent <INTEGER>] nent=1
initial delta {initial_delta = <REAL>} initial_delta =1.0{ Required N/A
threshold delta {threshold_delta = <REAL>} threshold_deltg Required N/A

l.e-6
exploratory [{exploratory_moves} {standard}| exploratory_movel Optional standard
moves | {offset} | {best_first} | s best_first group
{biased_best_first}]

As described previously, the randeeed is used to make stochastic optimizations repeatable.
Theexpansion_policy setting specifies how many times an increase in delta can occur
(eitheronce orunlimited times). Theexpand_after_success control specifies how
many successful objective function improvements must occur with a specific delta prior to
expansion of the delta. Thexpansion_exponent andcontraction_exponent specify
the exponents used to evaluate the expansion and contraction factors, respectively. The
initial_delta andthreshold_delta specify the starting delta value and the minimum
value of delta that will be used prior to terminating, respectively. Lastly, the
exploratory_moves setting controls how:

* the evaluations about a current point are ordered.offset case examines each of tBe
offsets in order whereas teeandard , best_first , andbiased_best_first
examine each of the dimensions in order. The offset and dimension orderings are identical
in the deterministic case; the distinction is only relevant for stochastic CPS in which the
orderings are shuffled either by offset or dimension (the order of dmaensions is shuffled
in thebest_first andbiased_best_first cases, and the order of tBa evaluations
is shuffled in theoffset case).

» whether or not the algorithm immediately selects the first improving point fofiset |,
best_first , andbiased_best_first) or waits and selects the best improving point
found from all new design pointstandard as well as the parallel case).

» whether the algorithm uses a bias to guide the algorithm in a direction where improving points
have previously been fountdigsed_best_first).

It is important to emphasize that the same sets of evaluation points are used by the
sgopt_coord_ps andsgopt_coord_sps methods; it is only therdering of the

evaluations that can differ due to the shuffling in the stochastic case. Consequently, in the parallel
case where the ordering of the evaluations is unimportant (since they are being performed
simultaneously)sgopt_coord_ps andsgopt_coord_sps are essentially identical.

User’s Instructions Method Commands - SGOPT Methods 173

Solis-\W\ets

DAKOTA's implementation of SGOPT also contains the Solis-Wets algorithm. Table 48 provides
the specification detail for this method and its method dependent controls.

Table 48 Specification detail for the SGOPT Solis-Wets method

Description Specification Sample Status Default
Solis-Wets ({sgopt_solis_wets} ...) sgopt_solis_wets Required | N/A
method group
Random seed [seed = <INTEGER>] seed=1 Optional 1
expand after [expand_after_success = expand_after_succ| Optional 5
success <INTEGER>] ess =2
contract after [contract_after_failure = contract_after_failu| Optional 3
failure <INTEGER>] re=2
initial p [initial_rho = <REAL>] initial_rho =1.0 Optional 0.5
thresholdp [threshold_rho = <REAL>] threshold_rho = | Optional 0.00001

l.e-6

As for other SGOPT methods, the randeeed is used to make stochastic optimizations

repeatable. Similar to CP8xpand_after_success

must occur with a speciffe prior to expansion gb. And contract_after_failure
specifies how many unsuccessful cycles must occur with a spgepffier to contraction op.

Theinitial_rho

andthreshold_rho

minimum value op that will be used prior to terminating, respectively.

Stratified Monte Carlo

settings specify the startipgvalue and the

Lastly, DAKOTAs implementation of SGOPT contains a stratified Monte Carlo (sMC)
algorithm. Table 49 provides the specification detail for this method and its method dependent

controls.
Table 49 Specification detail for the SGOPT sMC method
Description Specification Sample Status Default
sMC method ({sgopt_strat_mc}...) sgopt_strat_mq Required N/A
group
Random seed [seed = <INTEGER>] seed =1 Optional 1
partitions [partitions = <LISTof> partitions = 2, 4, | Optional No partitioning

<INTEGER>]

3

As for other SGOPT methods, the randesed is used to make stochastic optimizations

repeatable. And thgartitions

User’s Instructions

Method Commands - SGOPT Methods

specifies how many successful cycles

list is used to specify the number of partitions in each design

174

variable. For examplgartitions = 2, 4, 3 specifies 2 partitions in the first design
variable, 4 partitions in the second design variable, and 3 partitions in the third design variable.

Nondeterministic Methods

DAKOTA's nondeterministic branch does not currently make use of the method independent

controls formax_iterations , max_function_evaluations ,
convergence_tolerance , Speculative gradientsputput verbosity, or
linear_constraints . As such, the nondeterministic branch documentation which follows

is limited to the method dependent controls for the Monte Carlo probability and mean value
methods.

Monte Carlo Probability Method

The Monte Carlo probability iterator is selected usingibwed probability specification.

This iterator performs sampling for different parameter values within a specified parameter
distribution in order to assess the distributions for response functions. Probability of event
occurrence (e.g., failure) is then assessed by comparing the response results against response
thresholds. DAKOTA currently implements Monte Carlo methods withirNibreD Probability

class.

The number of samples to be evaluated is selected withbdssvations integer

specification. Theseed integer specification specifies the seed for the random number generator
which is used to make Monte Carlo studies repeatable. The parameter samples can be selected
with pure Monte Carlo (by specifyingample_type random) or with latin hypercube Monte

Carlo (by specifyinggample_type Ihs). Lastly, theresponse_thresholds

specification supplies a list ofreal values for comparison with theesponse functions being
computed. Table 50 provides the specification detail for the Monte Carlo probability method.

Table 50 Specification detail for the Monte Carlo probability method

Description Specification Sample Status Default
Monte Carlo ({nond_probability} ...) nond_probability Required | N/A
probability group
observations {observations = observations = 100 Required N/A

<INTEGER>}
random seed [seed = <INTEGER>] seed =1 Optional 1
sample type {sample_type} {random} | | sample_type, Ihs Required N/A
{Ihs}
response_thresho {response_thresholds = response_thresholds| Required N/A
Ids <LISTof> <REAL>} =1.0,2.0

User’s Instructions Method Commands - Nondeterministic Methods 175

Mean Value Method

The mean value method is selected usingntrel_mean_value specification. This iterator
computes approximate response function distribution statistics based on specified parameter
distributions. The mean value method is a direct method and does not perform any random
sampling.

Theresponse_filenames specification supplies a list of file name strings for response data
files which the mean value algorithm will process to determine the failure probability.

The specifics of this computation within the mean value implementation are currently
application-dependent, but generalization is a pending development item. Table 51 provides the
specification detail for the mean value method.

Table 51 Specification detail for the mean value method
Description Specification Sample Status Default
Mean value ({nond_mean_value} ...) nond_mean_value Required| N/A
method group
response {response_filenames = response_filenames ¥ Required N/A
filenames <LISTof> <STRING>} ‘rl.dat’, ‘r2.dat’

Parameter Study Methods

DAKOTA's parameter study methods compute response data sets at a selection of points in the
parameter space. These points may be specified as a vector, a list, a set of centered vectors, or an
n-dimensional hyper-surface. DAKOTA implements all of the parameter study methods within
theParamStudy class.

DAKOTA's parameter study methods do not currently make use of the method independent

controls formax_iterations , max_function_evaluations ,
convergence_tolerance , Speculative gradientsputput verbosity, or
linear_constraints . Since each of the parameter study methods is consistent in this way,

the parameter study documentation which follows is limited to the method dependent controls for
the vector, list, centered, and multidimensional parameter study methods.

Capability overviews and examples of the different types of parameter studies are provided in
Parameter Study Capabilities on page 62. The following discussions focus on the details of
command specification.

Vector Parameter Study

DAKOTA's vector parameter study computes response data sets at selected intervals along a
vector in parameter space. It encompasses both single-coordinate parameter studies (to study the

User’s Instructions Method Commands - Parameter Study Methods 176

effect of a single variable on a response set) and multiple coordinate vector studies (to investigate
the response variations along some n-dimensional vector). This study is selected using the

vector_parameter_study specification followed by eitherfanal_point ora
step_vector specification.
The vector for the study can be defined in several ways. Ffinslapoint specification,

when combined with the Initial Values (see Initial Values on page 63), uniquely defines an n-
dimensional vector’s direction and magnitude through its start and end points. The intervals
along this vector may either be specified witep_length or anum_steps specification.

In the former case, steps of equal length (Cartesian distance) are taken from the Initial Values up
to (but not past) théinal_point . The study will terminate at the last full step which does not

go beyond thénal_point . In the lattemum_steps case, the distance between the Initial
Values and thénal_point is broken intcmum_steps intervals of equal length. This study
starts at the Initial Values and ends atfthal _point , making the total number of

simulations equal taum_steps+1 . Thefinal_point specification detail is given in Table

52.
Table 52 final_point specification detail for the vector parameter study
Description Specification Sample Status Default
Vector parameter| ({vector_parameter_study}| vector_parameter | Required N/A
study study group
Final point with | ({final_point = final_point = Required N/A
step length or <LISTof><REAL>} 1.0,2.0 num_stepg group
number of steps | {step_length = <REAL>}| | =10
{num_steps =
<INTEGER>})

The other technique for defining a vector in the study istéye vector

specification. This

parameter study starts at the Initial Values and adds the increments spesifegd u@ctor

to obtain new simulation points. This process is performad_steps times, and since the
Initial Values are included, the total number of simulations is again egonahtosteps+1 .
Thestep_vector specification detail is given in Table 53.

Table 53 step_vector specification detail for the vector parameter
study
Description Specification Sample Status Default

Vector parameter| ({vector_parameter_study}| vector_parameter | Required N/A
study study group
Step vector and | ({step_vector = step_vector = 1., | Required N/A
number of steps | <LISTof><REAL>} 1., 1. num_steps = group

{num_steps = 10

<INTEGER>})

User’s Instructions Method Commands - Parameter Study Methods 177

Refer to Vector Parameter Study on page 63 for example specifications and the function
evaluations that result.

List Parameter Study

DAKOTA s list parameter study allows for evaluations at user selected points of interest which
need not be colinear or coplanar. This study is selected usihigttiparameter_study
method specification followed byliat_of points specification.

The number of real values in th&t_of points specification must be a multiple of the

total number of continuous variables specified in the variables section. This parameter study
simply performs simulations for the first parameter set (thefiesttries in the list), followed by
the next parameter set (the nex¢ntries), and so on, until the list of points has been exhausted.
Since the Initial Values will not be used, they need not be specified. The list parameter study
specification detail is given in Table 54.

Table 54 Specification detail for the list parameter study
Description Specification Sample Status Default

List parameter (list_parameter_study Required | N/A

study {list_parameter_study group
1)

List of points {list_of_points = list_of_points = 0.0, Required N/A
<LISTof> <REAL>} | 0.0, 0.5, 0.0, 0.5, 0.5,

0.0,05
The sampldist_of points specification shown in Table 54 would perform simulations at

the 4 corners of a square with edge length of 0.5 for a set of 2 variables.

Centered Parameter Study

DAKOTA's centered parameter study computes response data sets along multiple vectors, one
per parameter, centered about the specified Initial Values. This is useful for investigation of
function contours with respect to each parameter individually in the vicinity of a specific point
(e.g., post-optimality analysis for verification of a minimum). It is selected using the
centered_parameter_study method specification followed lpercent_delta and
deltas_per_variable specifications, whengercent_delta specifies the size of the
increments in percent amiéltas_per_variable specifies the number of increments per
variable in each of the plus and minus directions. The centered parameter study specification
detail is given in Table 55.

User’s Instructions Method Commands - Parameter Study Methods 178

Table 55 Specification detail for the centered parameter study

Description Specification Sample Status Default
Centered (centered_paramete Required N/A
parameter study | {centered_parameter_study} r_study group

o)
Interval size in {percent_delta = <REAL>} percent_delta =1|0 Required N/A
percent
Number of +/- {deltas_per_variable = deltas_per_variabl| Required N/A
deltas per <INTEGER>} e=5
variable

Refer to Centered Parameter Study on page 66 for example specifications and the function
evaluations that result.

Multidimensional Parameter Study

DAKOTA's multidimensional parameter study computes response data sets for an n-dimensional
hypergrid of points. Each continuous variable is partitioned into equally spaced intervals between
its upper and lower bounds, and each combination of the values defined by the boundaries of
these partitions is evaluated. This study is selected usimguthielim_parameter_study

method specification followed bypartitions specification, where the partitions list

specifies the number of partitions for each continuous variable. Therefore, the number of entries
in the partitions list must be equal to the total number of continuous variables specified in the
variables section. Since the Initial Values will not be used, they need not be specified. The
multidimensional parameter study specification detail is given in Table 56.

Table 56 Specification detail for the multidimensional parameter study
Description Specification Sample Status Default
Multidimensional ({multidim_parameter_study} | multidim_para| Required N/A
parameter study) meter_study | group
Partitions per {partitions = <LISTof> partitions = 4 | Required N/A
variable <INTEGER>} 24

Refer to Multidimensional Parameter Study on page 67 for example specifications and the
function evaluations that result.

User’s Instructions Method Commands - Parameter Study Methods 179

Installation Guide

oy 154

Distributions and Checkouts

Installation of DAKOTA can be done from a distribution file (tape, CD, secure Web site
download, etc.) or a checkout from the Concurrent Version System (CVS) repository.

If you are extracting DAKOTA from a distribution file, first extract the distribution
(Dakota.tar.gz) from the tape/CD/Web and move it to your installation directory. Then the
following steps are performed:

gunzip Dakota.tar.gz
tar xvf Dakota.tar

If you are accessing current files from the CVS repository, you first need to have access to the
CVS software on your workstation. You can get CVS via anonymous ftp from a number of sites,
for instanceprep.ai.mit.edu in directorypub/gnu . Next, you need to be in thiakota
developers’ group and have ydb€VSROOEnvironment variable set to the repository directory
where DAKOTA resides (i.e/usr/local/eng_sci/CVS). If, in addition, you are using the
remote client-server capabilities of CVS, then$®/SROOTVariable needs a machine prefix
(i.e.,sass2248:/usr/local/eng_sci/CVS) and thebCVS_RSHenvironment variable

must specify the remote shell program to use (esky., ssh). The following steps can then be
executed to check out the repository:

newgrp dakota
cd $HOME
cvs checkout Dakota

Basic Installation

Now that the DAKOTA files have been checked out or extracted, the next step is to configure and
build the system using the following steps:

1) setenv DAKOTA $HOME/Dakota

2) cd $DAKOTA

3) In -s <RogueWavelnstallationDir> rogue
4) In -s <MPI_InstallationDir> mpi

5) configure <config_options>

6) make

Omission of step 1 is a common error; therefore it is wise to set this environment variable in your
.cshrc file. Of coursepDAKOTAdoes not have to be setitHOME/Dakota . If one wishes a
different installation location or is maintaining multiple repositories or configurations of
DAKOTA code, therSDAKOTAshould be set and/or managed accordingly. This is in fact why
the $SDAKOTAvariable exists.

Configuration Management Installation Guide - Distributions and Checkouts 180

The DAKOTA software relies upon the Rogue Wave Tools.h++ software, which is a C++ utility
library for data management with vector classes, linked lists, hash tables, etc. If you are
compiling on a Sun/Solaris host platform, this may be available as part of the C++ compiler
distribution. If not, you will need to purchase a license for this product and install it on your
workstation. Since there is no standard location for the Rogue Wave Tools.h++ software, the
configure fragment files assume that the Rogue Wave software is installed in the directory
$DAKOTA/rogue . Step 3 creates a symbolic link from this directory to the actual Rogue Wave
installation directory.

To build DAKOTA with message-passing capability for parallel platforms, the MPI software
must be installed on the target machine. There is no standard location for the MPI software
(although/usr/local/mpi is common). Consequently, the configure fragment files assume
that MPI is located in the directoBDAKOTA/mpi. Thus, step 4 creates a symbolic link from
this directory to the actual MPI installation directory.

In both steps 3 and 4, the symbolic links must point to the directory level within the Rogue Wave
and MPI distributions which contains then , lib , andinclude directories.

In step 5, the DAKOTA software is configured for building on specific hosts for specific target
platforms. In the top-level directory defined BPAKOTAthere exists a shell script called
configure which is a program designed to automate much of the setup activity associated
with building large suites of programs on various hardware platforms. Some of what
configure does:

* makes symbolic links so that files used for configuration can be accessed from one location

» generates Makefiles so that objects, libraries, executables and other ‘targets’ can be created for
specific and unique hardware platforms

« calls itself recursively so that sub-directories can also be configured
Refer to Configuration Details on page 181 and the Cygnus configure documentation
($DAKOTA/docs/configure.ps) for information on configure operations and options.

Running configure without any options will result in inclusion of all vendor packages and
exclusion of MPI.

In step 6, the Makefiles generated in the configure step are executed winidikédhneommand.
Refer to Makefile Details on page 184 for additional information.

Configuration Details

The full parameter list for theonfigure script is below:

configure hosttype [--target=target] [--srcdir=dir] [--rm]
[--site=site] [--prefix=dir] [--exec-prefix=dir]
[--program-prefix=string] [--tmpdir=dir]
[--with-package[=yes/no]] [--without-package]
[--enable-feature[=yes/no]] [--disable-feature]

Configuration Management Installation Guide - Configuration Details 181

[--norecursion] [--nfp] [-s] [-V] [-V | - version]

[--help]
Makefiles are custom created frdnakefile.in template files which outline the basic
“targets” that can be built for each directory. Variables that are package, site or hardware
dependent are stored in individual “fragment” files in§BAKOTA/config directory. These
fragment files are added to the custom Makefiles when users and code developers (recursively)
configure this repository with specific host, target, package, and/or site parameters.

An example configuration command for a native build on a Sun/Solaris host using the SGOPT,
DOT, NPSOL, and OPT++ vendor optimizer packages (see Configuring with specific vendor
optimizers on page 183 for more info on packages) follows:

configure

NOTE: Thehosttype and--target parameters are not necessary since available system
information can be acquired from your local machine. If your Sun workstation is running Solaris
2.5.1, then theonfig.guess script will provideconfigure with the triplet Sparc-
sun-solaris2.5.1 ". If you wish to supply dosttype parameter for a Sun/Solaris

system, sun4sol2 ' is preferred.

Runningconfigure takes a while, be patient. Verbose output will always be displayed unless
the user/developer wishes to silence it by specifying the paramsilent . If you wish to
configure only one level/directory, please remember to use the egtarecursion Al
generateaonfig.status files include this parameter as a default for easy Makefile
regeneration.

After your configure command is completed, three files will be generated in each configured
directory (specified by the fileonfigure.in).

1. Makefile.${target_vendor}

The ${target_vendor} suffix will depend on the target specified (i.syfi” for the

command above). Native builds have identical host and target vendor values. If you specified
a “--target=tflop " parameter, theiakefile.intel files would then be created for

a cross-compilation build on the Solaris host for the Sandia Intel TFLORafues,) target
platform.

2. Makefile

This will be a symbolic link to the file mentioned above. A user/developer will simply type
“make” and the last generatddakefile.${target_vendor} will then be referenced.

3. config.status

This is a “recording” of the configuration process (i.e., what commands were executed to
generate the Makefile). It can be used by the custom Makefile to regenerate the configuration
with the ‘make Makefile 7 command.

Configuration Management Installation Guide - Configuration Details 182

Fragment files exist so thednfigure can support multi-platform environments. DAKOTA
can be configured for code development and execution on the following platforms :
SPARC-SUN-SOLARIS2.5.10r higher (i.e., Sun ULTRAsparc)
MIPS-SGI-IRIX6.50r higher (i.e., SGI Octane)
HPPA1.1-HP-HPUX9.050r higher (i.e., HP 9000/700 series)
PENTIUM-INTEL-COUGAROor higher (i.e., Intel TFLOP
supercomputer)

Below is a list of the fragment files used for configuring this software and examples of what
dependent information they contain. They are listed in the order in which they will appear in the
generated Makefiles. Inclusion of these fragment files is controlled loptifigure.in file

and any parameters you specify (i-enith-<PACKAGE> or--target=<TGT_ALIAS>)

with theconfigure command.

» The following files contain package variables for location/definition of package source,

include, library, defines, etc.

mp-opt++
mp-npsol
mp-dot-dp
mp-dot-sp
mp-sgopt
mp-stdlib
mp-mpi
mp-bayes
mp-cluster
mp-dakota
mp-idr
mp-twafer

» The following files contain target variables that help build Makefile targets (i.e., CC, CCC,
AR, LEX, ARCH_DEFINES, ARCH_INCLUDES, ARCH_LIBS, etc.)

mt-solaris
mt-irix
mt-hpux
mt-cougar
» The following files contain host variables for administration/management of Makefile targets

(i.e., AWK, CHMOD, RM, MKDIR, CD, etc.)

mh-solaris
mh-irix
mh-hpux
mh-cougar
» The following file contains site variables and macros for overriding implicit Makefile rules
when building objects, archives, etc. It is always included by default in every generated

Makefile unless overridden by a parametesite=...) to configure
ms-dakota.std

Configuring with specific vendor optimizers

All of the available vendor optimizers (DOT, NPSOL, OPT++, and SGOPT) are configured for
building by default. If the user/developer wishes to configure DAKOTA without any of the
vendor optimizer packages, he/she must specify any combination of the following parameters:
-without-dot , --without-npsol , --without-optpp , Or--without-sgopt

Some examples follow:

Configuration Management Installation Guide - Configuration Details 183

« configure --without-npsol --without-sgopt
Configure and generate Makefiles that construct an
executable using libraries from the DOT and OPT++ optimizers

only .
« configure --without-opt++

Configure and generate Makefiles that construct an

executable using libraries from the DOT, NPSOL, and SGOPT

optimizers only .
Each of the configured vendor optimizer packages will contain their own individual ‘build’
directories. See Makefile Details on page 184 for more information concerning build directories
and how they manage multi-platform binaries.

Configuring with the Message Passing Interface

The Message Passing Interface (MPI) package will not be configured into DAKOTA as a default
unless the user configures for the Intel TFLOP target. If the user wishes to use this message-
passing library on parallel platforms other than the Intel TFLOP distributed memory
supercomputer, theawith-mpi must be specified. If the user configures for the Intel TFLOP
target and doesot wish to use MPI, theawithout-mpi must be specified. Refer to
Master-slave algorithm on page 103 for more information about the use of MPI within

DAKQOTA. Several examples follow:

* configure --target=tflop

Configure and generate Makefiles that construct an
executable for the Intel TFLOP platform using libraries from
the DOT, NPSOL, SGOPT, and OPT++ optimizers and the MPI
software package.

* configure --with-mpi
Configure and generate Makefiles that construct an
executable on your native platform (i.e., Solaris) using
libraries from the DOT, NPSOL, SGOPT and OPT++ optimizers
and the MPI software package.

« configure --target=tflop --without-mpi --without-sgopt
Configure and generate Makefiles that construct an
executable for the Intel TFLOP platform using libraries from
the DOT, NPSOL and OPT++ optimizers only .

Makefile Detalils

Some versions ahake fail to build the system properly. Tieake program in/usr/ccs/
bin is preferred tdusr/local/bin/make on the Sun platform, arginake is often
preferred on other platforms. The versiomake invoked by default can be queried by
executing the command:

which make

Configuration Management Installation Guide - Makefile Details 184

If this is not the desirethake, then thebpath environment variable can be modified as in the
following:
set path = (/usr/ccs/bin $path)

As with the$DAKOTAenvironment variable, it may be desirable to add&hath addition to
the.cshrc file to render the change permanent.

As stated in Basic Installation on page 180, building/compiling the system after a successful
configuration entails invoking the commanaédke” from the top-level$DAKOTAdirectory. The
latestMakefile.${target_vendor} generated bgonfigure will be referenced by this
command (due to thidakefile symbolic link). Please note that build directories are generated
to store object/library files and binaries for a particular target platform. If you configured
DAKOTA for a native build on a Sun/Solaris host, your build directories will all be called
sparc-sun-solaris2.5.1 . If you configured DAKOTA for the Intel TFLOP platform,

your build directories will all be callegentium-intel-cougar

During an initialmake process, every makefile generates dependencies for the source files in the
makefile’s directory prior to actually compiling the object files and linking the libraries and/or
executables. These dependencies are appended to the bottom of the makefiles and are used for
managing which source files must be recompiled whenever header files are modified. This is
needed because, while a standard makefile manages the dependency of targets on source files, it
does not manage the dependence of source files on header files. If a developer changes the source
file dependencies (e.g., by adding or removiimglude directives), a thake Makefile ”

command can be used to create a fresh makefile and theska™command will create an

updated dependency list, append the dependency list to the new makefile, and then recompile
only the affected source modules.

You can remove obiject files, libraries, and executables from the build directories by typing
“make clean . Theclean target will also cause regeneration of dependencies. If you wish to
reconfigure your DAKOTA source from scratch or regenerate all custom makefilse “

distclean " can be used to remove all symbolic links, custom makefiles, and

config.status files. Once in this state, the system must be reconfigured prior to building.

Each set of target “build” directories (and the object/library files and binaries they contain) is an
independent entity. After configuring and building DAKOTA for a Sun/Solaris target, you can
configure and build for, say, an Intel/TFLOP target, without destroying any previous Sun/Solaris
files. Only theMakefile symbolic links are overwritten. Specific target binaries and object/
library files get removed with atean ” rule and specific target/build directories get removed
with a “distclean " rule. Thus, a cleaning operation for one platform will not interfere with
other platform files. However, multiplefean ” or “distclean " executions may be needed

for each target platform in order to completely clean a distribution.

After a successful build, the actualakota ” executable is located in the build directory within
$DAKOTA/src (e.g.,.3DAKOTA/src/sparc-sun-solaris2.5.1/dakota). In
addition, test simulator executables reside in the build directory VAilPRKOTA/test (e.q.,

Configuration Management Installation Guide - Makefile Details 185

$DAKOTA/test/sparc-sun-solaris2.5.1/text_book). Symbolic links to these
executables are provided in tBBAKOTA/test directory for testing convenience.

Caveats

Intel cross-compilation

The InteliCC compilers provided by the Portland Group for the Cougar operating system

require that the object and template instantiation files reside in the same directory as the source

files for linking of thedakota executable. Therefore, the variable specifying the build directory

in the dakota source (nominalpAKOTA/src/pentium-intel-cougar) must be

overridden in the source Makefi@AKOTA/src/Makefile.intel) to ensure that the

objects are placed in the source directory, rather than a build subdirectory. To perform this

override, two modifications must be madéviakefile.intel . Change the line:
DAKOTA_SRC_BUILD = $(DAKOTA_SRC)/$(target_canonical)

to
DAKOTA_SRC_BUILD = $(DAKOTA_SRC)

and then remove or comment out the following line from the distclean target in order to prevent
removal of the source directory onradke distclean
$(RM) -r $(DAKOTA_SRC_BUILD)

System modifications

If you need to do unusual things to build this system, please determine if configure can be used
to accomplish them. Notify us via e-mail by sending instructions to the address shown below so
that a future release can incorporate your recommendations.

Michael S. Eldred, Sandia National Laboratories,
mseldre@sandia.gov

Configuration Management Installation Guide - Caveats 186

Installation Examples

Sun Solaris platform

After checking out the repository or extracting the tape archive, a Dakota directory will be
present which is ready for configuration and compilation. An example configuration performed
on the Sandia JAL LAN is supplied in which the Dakota directory has been installed at the top
level of a user directory.

First, one sets environment variables, changes directories to the correct directory for configuring
and building, and installs soft links to the Rogue Wave Tools.h++ and MPI installation
directories, e.g.:

setenv DAKOTA $HOME/Dakota

cd $DAKOTA

In -s /usr/sharelan/dakota/rogue_wave/rogue rogue
In -s /usr/local/mpi mpi

From this directory, executing the command
Jconfigure --with-mpi

gives the following output with omissions as marked:

Configuring for a sparc-sun-solaris2.5.1 host.
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"
Configuring idr...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/idr using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"
Configuring VendorOptimizers...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring sgopt...
sparc-sun-solaris2.5.1
Host/Target/Site Configuration:
HOST solaris
TARGET solaris
SITE dakota.std
COMPILER
config/mp-solaris-dakota.std does not exist! Using a default configuration!
Package Configuration:

MPI no
TCC no
GM no

COBYLA no
OPTIMIZATION <default>
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/sgopt using
"config/mf-solaris-solaris-dakota.std" and "./config/ms-dakota.std"
<<omission of SGOPT subdirectories>>
Configuring DOT...
Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/DOT using
"config/mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring NPSOL...

Configuration Management Installation Examples - Sun Solaris platform 187

Linked "config" to "./../../config".

Linked "Makefile" to "./Makefile.sun".

Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/NPSOL using
"config/mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring opt++...

Linked "config" to "./../../config".

Linked "Makefile" to "./Makefile.sun".

Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/opt++ using
"config/mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
<<omission of OPT++ subdirectories>>

Configuring src...

Linked "config" to "./../config".

Linked "Makefile" to "./Makefile.sun".

Created "Makefile.sun" in /home/mseldre/Dakota/src using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"

Configuring test...

Linked "config" to "./../config".

Linked "Makefile" to "./Makefile.sun".

Created "Makefile.sun" in /home/mseldre/Dakota/test using "config/mh-solaris"
and "config/mt-solaris" and "./config/ms-dakota.std"

as it generates Makefiles in the DAKOTA subdirectories.
Now that Makefiles have been created, executing the command
make

from the sam&DAKOT Adirectory will build the system. While this output is too lengthy to fully
replicate here, some excerpts are provided below with omissions as marked:

= Building Input Deck Reader executable: 'idrtest' - BEGIN =

if [! -d $DAKOTA/idr/sparc-sun-solaris2.5.1]; then \
mkdir -m 775 $DAKOTA/idr/sparc-sun-solaris2.5.1; \
fi
Jusr/ccs/bin/make -f Makefile.sun $DAKOTA/idr/sparc-sun-solaris2.5.1/idrtest

<<omission>>

= Building Input Deck Reader executable: 'idrtest' - END =

= Install DAKOTA software - BEGIN =

= Install Input Deck Reader library - BEGIN =

if [! -d $DAKOTA/idr/sparc-sun-solaris2.5.1]; then \
mkdir -m 775 $DAKOTA/idr/sparc-sun-solaris2.5.1; \

fi

/usr/ccs/bin/make -f Makefile.sun library

Archiving Object File(s) -- idr.o idr-parser.o

ar ru $DAKOTAVidr/sparc-sun-solaris2.5.1/libidr.a $DAKOTA/idr/sparc-sun-
solaris2.5.1/idr.o $DAKOTA/idr/sparc-sun-solaris2.5.1/idr-parser.o

ar: creating $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a

Is -IF $DAKOTAVidr/sparc-sun-solaris2.5.1/libidr.a

-rw-rw-r-- 1 <user> <user> 46684 Jan 8 09:52 $DAKOTA/idr/sparc-sun-
solaris2.5.1/libidr.a

= Install Input Deck Reader library - END =

= Install DAKOTA VendorOptimizers - BEGIN =

Configuration Management Installation Examples - Sun Solaris platform 188

(for DIRS in sgopt DOT NPSOL opt++; do \
cd ${DIRS}; /usr/ccs/bin/make -f Makefile.sun install; cd ..; \
done)

= Install SGOPT Software - BEGIN =

if [! -d $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1]; then \
mkdir -m 775 $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1; \
fi
(for DIRS in packages src examples; do \
cd ${DIRS}; /usr/ccs/bin/make -f Makefile.sun install; cd ..; \
done)

<<omission>>

= Install SGOPT Software - END =

= Install DOT Package - BEGIN =

if [! -d $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1]; then \
mkdir -m 775 $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1; \

fi

(/usr/ccs/bin/make -f Makefile.sun library);

<<omission>>

= Install DOT Package - END =

= Install NPSOL Package - BEGIN =

if [! -d $DAKOTA/VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1]; then \
mkdir -m 775 $DAKOTA/VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1; \

fi

(/usri/ccs/bin/make -f Makefile.sun library);

<<omission>>

= Install NPSOL Package - END =

= Install OPT++ Package - BEGIN =

if [! -d $DAKOTA/VendorOptimizers/opt++/sparc-sun-solaris2.5.1]; then \
mkdir -m 775 $DAKOTA/VendorOptimizers/opt++/sparc-sun-solaris2.5.1; \
fi

<<omission>>

= Install OPT++ Package - END =

= Install DAKOTA VendorOptimizers - END =

= Install DAKOTA Source - BEGIN =

if [! -d $DAKOTA/src/sparc-sun-solaris2.5.1 |; then \
mkdir -m 775 $DAKOTA/src/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun $DAKOTA/src/sparc-sun-solaris2.5.1/
libdakota.a);

<<omission>>

(/usri/ccs/bin/make -f Makefile.sun $DAKOTA/src/sparc-sun-solaris2.5.1/dakota);

Configuration Management Installation Examples - Sun Solaris platform 189

Linking Object File(s) -- Creating DAKOTA executable: dakota

CC -fast -D__EXTERN_C__ -DDAKOTA_SGOPT -DDAKOTA_DOT -DDAKOTA_NPSOL -
DDAKOTA_OPTPP -DNEWMAT -DSERIAL -DUNIX -DSOLARIS -DMULTITASK -I$DAKOTA/src/. -
ISDAKOTA/idr/. -ISDAKOTA/VendorOptimizers/sgopt/include/. -ISDAKOTA/
VendorOptimizers/sgopt/packages/stdlib/include/. -ISDAKOTA/VendorOptimizers/DOT/
include/. -ISDAKOTA/VendorOptimizers/NPSOL/include/. -ISDAKOTA/VendorOptimizers/
opt++/include/. -L/opt/SUNWspro/SC4.2/lib -o $DAKOTA/src/sparc-sun-
solaris2.5.1/dakota $DAKOTA/src/sparc-sun-solaris2.5.1/main.o
$DAKOTA/src/sparc-sun-solaris2.5.1/decomp.o $DAKOTA/src/
sparc-sun-solaris2.5.1/init_parallel_lib.o $DAKOTA/src/sparc-sun-
solaris2.5.1/keywordtable.o $DAKOTA/src/sparc-sun-solaris2.5.1/
CommandLineHandler.o $DAKOTA/src/sparc-sun-solaris2.5.1/DakotaModel.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DakotaVariables.o $DAKOTA/src/
sparc-sun-solaris2.5.1/DakotaResponse.o $DAKOTA/src/sparc-sun-
solaris2.5.1/Dakotalnterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/
Applicationinterface.o ~ $DAKOTA/src/sparc-sun-solaris2.5.1/
SysCallApplicinterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DirectFnApplicinterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DirectFnTextBook.o $DAKOTA/src/sparc-sun-solaris2.5.1/
ExecutableProgram.o $DAKOTA/src/sparc-sun-solaris2.5.1/AnalysisCode.o
$DAKOTA/src/sparc-sun-solaris2.5.1/CommandShell.o $DAKOTA/src/
sparc-sun-solaris2.5.1/ParamResponsePair.o $DAKOTA/src/sparc-sun-
solaris2.5.1/ProblemDescDB.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DataMethod.o $DAKOTA/src/sparc-sun-solaris2.5.1/DataVariables.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DataResponses.o $DAKOTA/src/
sparc-sun-solaris2.5.1/Datalnterface.o $DAKOTA/src/sparc-sun-
solaris2.5.1/DakotaStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/
SingleMethodStrategy.o ~ $DAKOTA/src/sparc-sun-solaris2.5.1/
MultilevelOptStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/
SegApproxOptStrategy.o0 $DAKOTA/src/sparc-sun-solaris2.5.1/NonDOptStrategy.o
$DAKOTA/src/sparc-sun-solaris2.5.1/Dakotalterator.o $DAKOTA/src/
sparc-sun-solaris2.5.1/ParamStudy.o $DAKOTA/src/sparc-sun-
solaris2.5.1/DakotaNonD.o $DAKOTA/src/sparc-sun-solaris2.5.1/
NonDProbability.o $DAKOTA/src/sparc-sun-solaris2.5.1/NonDMeanValue.o
$DAKOTA/src/sparc-sun-solaris2.5.1/Lhs.o $DAKOTA/src/
sparc-sun-solaris2.5.1/LhsInput.o $DAKOTA/src/sparc-sun-
solaris2.5.1/Vm_util.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DakotaOptimizer.o $DAKOTA/src/sparc-sun-solaris2.5.1/DOTOptimizer.o
$DAKOTA/src/sparc-sun-solaris2.5.1/SNLLOptimizer.o
$DAKOTA/src/sparc-sun-solaris2.5.1/SGOPTOptimizer.o $DAKOTA/src/sparc-sun-
solaris2.5.1/SGOPTRealApplication.o $DAKOTA/src/
sparc-sun-solaris2.5.1/NPSOLOptimizer.o $DAKOTA/src/sparc-sun-solaris2.5.1/
npoptn_wrapper.o $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a $DAKOTA/
VendorOptimizers/sgopt/sparc-sun-solaris2.5.1/libsgopt.a $DAKOTA/
VendorOptimizers/sgopt/packages/stdlib/sparc-sun-solaris2.5.1/libstdlib.a
$DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1/libdot.a $SDAKOTA/
VendorOptimizers/INPSOL/sparc-sun-solaris2.5.1/libnpsol.a $DAKOTA/
VendorOptimizers/opt++/sparc-sun-solaris2.5.1/liboptpp.a -lrwtool -IM77 -IF77 -
Isunmath -Il -ly -Im

= Install DAKOTA Source - END =

= Install DAKOTA Test code - BEGIN =

if [! -d $DAKOTA/test/sparc-sun-solaris2.5.1]; then \
mkdir -m 775 $DAKOTA/test/sparc-sun-solaris2.5.1; \
fi

<<omission>>

= Install DAKOTA Test code - END =

= Install DAKOTA software - END =

You can now change directories to the test area

Configuration Management Installation Examples - Sun Solaris platform 190

cd test

and execute dakota on the test files therein, e.g.:
dakota -i dakota textbook.in

Configuration Management Installation Examples - Sun Solaris platform 191

Textbook Example

Textbook Problem Formulation

The optimization problem formulation is stated as

minimize
f =k 1—1)4+(x2—1)4+... +(xn—1)4 (8)
subject to
2 X
g,=X5-05<0 (10)
0.5<x,<5.8 (12)
—2.9<x,<2.9 (12)

This example problem may also be used to exercise least squares solution methods by modifying
the problem formulation to:

minimize
(f)2+(91)2+(9,)? (13)
This modification is performed by simply changing the responses specification for the three
functions fromnum_objective_functions = 1 and
num_nonlinear_constraints = 2 tonum_least _squares_terms = 3 . Note

that the 2 problem formulations are not equivalent and will have different solutions. More
specifically, the optimization solution seeks to find the minimum objective function which
satisfies the constraint inequalities, whereas the least squares formulation seeks to minimize the
sum of the squares of the three residual functions.

Another way to exercise the least squares methods which would be equivalent to the optimization
formulation would be to select the residual functions t(xbe1) 2. However, this formulation

requires significant modification text_book.C and will not be presented here. Equation
(13), on the other hand, does not require any modificatitextobook.C . Refer to
Rosenbrock Example on page 204 for an example of minimizing the same objective function
using both optimization and least squares approaches.

Example Problems Textbook Example - Textbook Problem Formulation 192

Methods

DOT and NPSOL methods may be used to solve this optimization problem with or without the
constraints. OPT++ methods may be used to solve the unconstrained optimization problem or the
least squares problem.

Thedakota_textbook.in file provided in thdDakota/test directory selects a
dot_mmfd optimizer to perform constrained minimization usingtheé_book simulator.
This simulator returns analytic gradients as requested by the optimizer.

A multilevel hybrid can also be demonstrated ontéx¢ book problem. The

dakota_multilevel.in file provided in théDakota/test directory starts with a
sgopt_pga_real solution which feeds its best point integopt_coord_sps

optimization which feeds its best point inbptpp_newton . While this approach is overkill for

such a simple problem, it is useful for demonstrating the coordination between multiple methods
in the multilevel strategy.

In addition,dakota_textbook_3pc.in demonstrates the use of a 3-piece interface to

perform the parameter to response mappingdahkdta textbook lhs.in demonstrates

the use of latin hypercube Monte Carlo sampling for assessing probability of failure as measured
by specified response thresholds.

Results

Optimization

The solution for the unconstrained optimization problem for 2 design variables is:
X1 = 1.0
Xo = 1.0

with
*=0.0

The solution for the optimization problem constrainedbys:
X1 =0.763
X, =1.16

with
f* =0.00388

g,* = 0.0 (active)

The solution for the optimization problem constrained pyndg, is:

x; = 0.594
Xo = 0.707

Example Problems Textbook Example - Methods 193

with
f*=0.0345
g1* = 0.0 (active)
g,* = 0.0 (active)

Note that as constraints are added, the design freedom is restricted and a penalty in the objective
function is observed. Of course, no penalty would be observed if the additional constraints were
not active at the solution.

Thedot_sqp optimizer navigates to the constrained optimum in 12 function calls and 5

gradient calls (17 evaluations total). The output from this minimization is shown below:

MPI initialized with 1 processors.

Writing new restart file dakota.rst

Constructing Single Method Strategy...

no method_pointer: last specifications parsed will be used
methodName = dot_sqgp

gradientType = analytic

hessianType = none

Running MPI executable in serial mode.

Running Single Method Strategy...

DDDDD 00000 TTTTTTT
DD O O T

D D==0*0== T

DD O O T

DDDDD OOO0O T

DESIGN OPTIMIZATION TOOLS
(C) COPYRIGHT, 1995
VR&D
ALL RIGHTS RESERVED, WORLDWIDE

VERSION 4.20

- YOUR INTEGRITY IS OUR COPY PROTECTION -

CONTROL PARAMETERS

OPTIMIZATION METHOD, METHOD = 3
NUMBER OF DECISION VARIABLES, NDV = 2
NUMBER OF CONSTRAINTS, NCON = 2
PRINT CONTROL PARAMETER, IPRINT = 3
GRADIENT PARAMETER, IGRAD = 1

GRADIENTS ARE SUPPLIED BY THE USER
THE OBJECTIVE FUNCTION WILL BE MINIMIZED

Begin Function Evaluation 1

Example Problems Textbook Example - Results 194

Parameters for function evaluation 1:
9.0000000000e-01 x1
1.1000000000e+00 x2

(text_book text_book.in.1 text_book.out.1)

Active response data for function evaluation 1:

Active setvector={111}
2.0000000000e-04 obj_fn

2.6000000000e-01 nin_conl
7.1000000000e-01 nin_con2

-- SCALAR PROGRAM PARAMETERS
REAL PARAMETERS

1)CT =-3.00000E-02 8) DX2 = 2.20000E-01

2) CTMIN = 3.00000E-03 9) FDCH = 1.00000E-03

3) DABOBJ = 2.00000E-08 10) FDCHM = 1.00000E-04
4) DELOBJ = 1.00000E-04 11) RMVLMZ = 4.00000E-01
5) DOBJ1 = 1.00000E-01 12) DABSTR = 2.00000E-08

6) DOBJ2 = 2.00000E-01 13) DELSTR = 1.00000E-03

7) DX1 = 1.00000E-02

INTEGER PARAMETERS
1)IGRAD = 1 B)NCOLA = 2 11)IPRNT1= O
2)ISCAL = 1000 7)IGMAX = 0 12)IPRNT2= 0
3)ITMAX = 50 8)JTMAX = 50 13)JWRITE= 0
4)ITRMOP= 2 9)ITRMST= 2
5 IWRITE= 6 10)JPRINT= 0

STORAGE REQUIREMENTS
ARRAY DIMENSION REQUIRED
WK 136 136
IWK 81 81
-- INITIAL VARIABLES AND BOUNDS

LOWER BOUNDS ON THE DECISION VARIABLES (XL-VECTOR)
1) 5.00000E-01 -2.90000E+00

DECISION VARIABLES (X-VECTOR)
1) 9.00000E-01 1.10000E+00

UPPER BOUNDS ON THE DECISION VARIABLES (XU-VECTOR)
1) 5.80000E+00 2.90000E+00

-- INITIAL FUNCTION VALUES

OBJ = 2.00000E-04

CONSTRAINT VALUES (G-VECTOR)
1) 2.60000E-01 7.10000E-01

-- BEGIN CONSTRAINED OPTIMIZATION: SQP METHOD

-- BEGIN SQP ITERATION 1

Begin Function Evaluation 2

Parameters for function evaluation 2:
9.0000000000e-01 x1
1.1000000000e+00 x2

Example Problems Textbook Example - Results

195

(text_book text_book.in.2 text_book.out.2)

Active response data for function evaluation 2:

Active set vector={22 2}

[-4.0000000000e-03 4.0000000000e-03] obj_fn gradient

[1.8000000000e+00 -5.0000000000e-01] nin_conl gradient
[0.0000000000e+00 2.2000000000e+00] nin_con2 gradient

Begin Function Evaluation 3

Parameters for function evaluation 3:
6.6386363636e-01 x1
7.7590909091e-01 x2

(text_book text_book.in.3 text_book.out.3)

Active response data for function evaluation 3:

Active setvector={111}
1.5287930702e-02 obj_fn
5.2760382226e-02 nin_conl
1.0203491736e-01 nin_con2

Begin Function Evaluation 4

Duplication detected in response requests for this parameter set:
6.6386363636e-01 x1
7.7590909091e-01 x2

Active response data retrieved from database:
Active setvector={111}
1.5287930702e-02 obj_fn

5.2760382226e-02 nin_conl
1.0203491736e-01 nin_con2

OBJ = 1.52879E-02

DECISION VARIABLES (X-VECTOR)
1) 6.63864E-01 7.75909E-01

CONSTRAINT VALUES (G-VECTOR)
1) 5.27604E-02 1.02035E-01

GMAX = 1.0203E-01

-- BEGIN SQP ITERATION 2

Begin Function Evaluation 5

Parameters for function evaluation 5:
6.6386363636e-01 x1
7.7590909091e-01 x2

(text_book text_book.in.5 text_book.out.5)

Active response data for function evaluation 5:

Active set vector={22 2}

[-1.5191703790e-01 -4.5012455672e-02] obj_fn gradient

[1.3277272727e+00 -5.0000000000e-01] nin_conl gradient
[0.0000000000e+00 1.5518181818e+00] nin_con2 gradient

Example Problems Textbook Example - Results 196

Begin Function Evaluation 6

Parameters for function evaluation 6:
5.9637770195e-01 x1
7.0822402407e-01 x2

(text_book text_book.in.6 text_book.out.6)

Active response data for function evaluation 6:

Active setvector={111}
3.3787645889e-02 obj_fn
1.5543513482e-03 nin_conl
1.5812682699e-03 nin_con2

Begin Function Evaluation 7

Parameters for function evaluation 7:
6.0987488883e-01 x1
7.2176103744e-01 x2

(text_book text_book.in.7 text_book.out.7)

Active response data for function evaluation 7:

Active setvector={111}
2.9157489712e-02 obj_fn
1.1066861305e-02 nin_conl
2.0938995166e-02 nin_con2

Begin Function Evaluation 8

Parameters for function evaluation 8:
6.1399879055e-01 x1
7.2589710766e-01 x2

(text_book text_book.in.8 text_book.out.8)

Active response data for function evaluation 8:

Active setvector={111}
2.7844963118e-02 obj_fn

1.4045960967e-02 nin_conl
2.6926610909e-02 nin_con2

OBJ = 2.78450E-02

DECISION VARIABLES (X-VECTOR)
1) 6.13999E-01 7.25897E-01

CONSTRAINT VALUES (G-VECTOR)
1) 1.40460E-02 2.69266E-02

GMAX = 2.6927E-02

-- BEGIN SQP ITERATION 3

Begin Function Evaluation 9

Parameters for function evaluation 9:
6.1399879055e-01 x1
7.2589710766e-01 x2

(text_book text_book.in.9 text_book.out.9)

Example Problems Textbook Example - Results 197

Active response data for function evaluation 9:

Active set vector ={22 2}

[-2.3005198645e-01 -8.2376027758e-02] obj_fn gradient

[1.2279975811e+00 -5.0000000000e-01] nin_conl gradient
[0.0000000000e+00 1.4517942153e+00] nin_con2 gradient

Begin Function Evaluation 10

Parameters for function evaluation 10:
5.9089395588e-01 x1
7.0528357263e-01 x2

(text_book text_book.in.10 text_book.out.10)

Active response data for function evaluation 10:
Active setvector={111}
3.5556238180e-02 obj_fn
-3.4861192195e-03 nin_conl
-2.5750821783e-03 nIn_con2

Begin Function Evaluation 11

Parameters for function evaluation 11:
5.9551492281e-01 x1
7.0940627964e-01 x2

(text_book text_book.in.11 text_book.out.11)

Active response data for function evaluation 11:
Active setvector={111}
3.3898544900e-02 obj_fn
-6.5116530600e-05 nin_conl
3.2572695927e-03 nin_con2

Begin Function Evaluation 12

Parameters for function evaluation 12:
5.9559270455e-01 x1
7.0947567449e-01 x2

(text_book text_book.in.12 text_book.out.12)

Active response data for function evaluation 12:

Active setvector={111}
3.3871152259e-02 obj_fn

-7.1675318164e-06 nin_conl
3.3557326930e-03 nin_con2

OBJ = 3.38712E-02

DECISION VARIABLES (X-VECTOR)
1) 5.95593E-01 7.09476E-01

CONSTRAINT VALUES (G-VECTOR)
1) -7.16753E-06 3.35573E-03
GMAX = 3.3557E-03

-- BEGIN SQP ITERATION 4

Example Problems Textbook Example - Results 198

Begin Function Evaluation 13

Parameters for function evaluation 13:
5.9559270455e-01 x1
7.0947567449e-01 x2

(text_book text_book.in.13 text_book.out.13)

Active response data for function evaluation 13:

Active set vector={22 2}

[-2.6455558611e-01 -9.8086106593e-02] obj_fn gradient

[1.1911854091e+00 -5.0000000000e-01] nin_conl gradient
[0.0000000000e+00 1.4189513490e+00] nin_con2 gradient

Begin Function Evaluation 14

Parameters for function evaluation 14:
5.9371257075e-01 x1
7.0499649858e-01 x2

(text_book text_book.in.14 text_book.out.14)

Active response data for function evaluation 14:
Active setvector={111}
3.4821641822e-02 obj_fn
-3.6326234263e-06 nin_conl
-2.9799369899¢e-03 nin_con2

Begin Function Evaluation 15

Parameters for function evaluation 15:
5.9408859751e-01 x1
7.0589233377e-01 x2

(text_book text_book.in.15 text_book.out.15)

Active response data for function evaluation 15:
Active setvector={111}
3.4629329912e-02 obj_fn
-4.9051936012e-06 nin_conl
-1.7160131247e-03 nIn_con2

Begin Function Evaluation 16

Parameters for function evaluation 16:
5.9442052455e-01 x1
7.0668310706e-01 x2

(text_book text_book.in.16 text_book.out.16)
Active response data for function evaluation 16:
Active setvector={111}

3.4460496673e-02 obj_fn

-5.7935237028e-06 nin_conl
-5.9898619602e-04 nin_con2

OBJ = 3.44605E-02
DECISION VARIABLES (X-VECTOR)

Example Problems Textbook Example - Results 199

1) 5.94421E-01 7.06683E-01

CONSTRAINT VALUES (G-VECTOR)
1) -5.79352E-06 -5.98986E-04

GMAX = -5.7935E-06

-- BEGIN SQP ITERATION 5

Begin Function Evaluation 17

Parameters for function evaluation 17:
5.9442052455e-01 x1
7.0668310706e-01 x2
(text_book text_book.in.17 text_book.out.17)
Active response data for function evaluation 17:
Active set vector ={22 2}
[-2.6686271425e-01 -1.0094184051e-01] obj_fn gradient

[1.1888410491e+00 -5.0000000000e-01] nin_conl gradient
[0.0000000000e+00 1.4133662141e+00] nin_con2 gradient

Q.P. SUB-PROBLEM GAVE NULL SEARCH DIRECTION. CONVERGENCE ASSUMED.

-- OPTIMIZATION IS COMPLETE
NUMBER OF CONSTRAINED MINIMIZATIONS = 5
CONSTRAINT TOLERANCE, CT =-3.00000E-02
THERE ARE 2 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
CONSTRAINT NUMBERS
1 2
THERE ARE 0 ACTIVE SIDE CONSTRAINTS
TERMINATION CRITERIA

MAXIMUM S-VECTOR COMPONENT = 0.00000E+00 IS LESS THAN 1.00000E-04
-- OPTIMIZATION RESULTS
OBJECTIVE, F(X) = 3.44605E-02

DECISION VARIABLES, X
ID XL X XU
1 5.00000E-01 5.94421E-01 5.80000E+00
2 -2.90000E+00 7.06683E-01 2.90000E+00
CONSTRAINTS, G(X)
1) -5.79352E-06 -5.98986E-04
FUNCTION CALLS = 12
GRADIENT CALLS = 5

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 17 total (16 new, 1 duplicate)

Example Problems Textbook Example - Results 200

<<<<< Best design parameters =
5.9442052455e-01 x1
7.0668310706e-01 x2
<<<<< Best objective function =
3.4460496673e-02
<<<<< Best constraint values =
-5.7935237028e-06
-5.9898619602e-04
Run time from MPI_Init to MPI_Finalize is 2.3499540000e+00 seconds

Least Squares

The solution for the least squares problem is:
X1 =0.602
X, =0.710

with the residual functions equal to

f*=0.0322
g1*=0.00673

g,* = 0.00455
and a minimal sum of the squares of 0.00111.

This study requires selectionmim_least_squares_terms = 3

in the responses

specification and selection of eitraatpp_g_newton oroptpp_bcg_newton inthe
method specification. Thaptpp_bcg_newton method navigates to the least squares solution

in 5 function and gradient calls. This output is shown below:

MPI initialized with 1 processors.

Writing new restart file dakota.rst

Constructing Single Method Strategy...

no method_pointer: last specifications parsed will be used
methodName = optpp_bcg_newton

gradientType = analytic

hessianType = none

Running MPI executable in serial mode.

Running Single Method Strategy...

Begin Function Evaluation 1

Parameters for function evaluation 1:
9.0000000000e-01 x1
1.1000000000e+00 x2

(text_book text_book.in.1 text_book.out.1)

Active response data for function evaluation 1:
Active set vector ={3 33}

2.0000000000e-04 least_sq_terml

2.6000000000e-01 least_sq_term2

7.1000000000e-01 least_sq_term3
[-4.0000000000e-03 4.0000000000e-03] least_sq_term1 gradient
[1.8000000000e+00 -5.0000000000e-01] least_sq_term2 gradient
[0.0000000000e+00 2.2000000000e+00] least_sq_term3 gradient

nif2_evaluator_gn results: objective fn. =

5.7170004000e-01

nlf2_evaluator_gn results: objective fn. gradient =
[9.3599840000e-01 2.8640016000e+00]

nif2_evaluator_gn results: objective fn. Hessian =
[[6.4800320000e+00 -1.8000320000e+00

Example Problems Textbook Example - Results

201

-1.8000320000e+00 1.0180032000e+01]]

Begin Function Evaluation 2

Parameters for function evaluation 2:
6.6590894007e-01 x1
7.7727283167e-01 x2

(text_book text_book.in.2 text_book.out.2)

Active response data for function evaluation 2:
Active set vector ={3 3 3}

1.4919211444e-02 least_sqg_terml

5.4798300630e-02 least_sq_term2

1.0415305485e-01 least_sq_term3
[-1.4916074862e-01 -4.4195655359¢e-02] least_sq_terml gradient
[1.3318178801e+00 -5.0000000000e-01] least_sq_term2 gradient
[0.0000000000e+00 1.5545456633e+00] least_sq_term3 gradient

nlf2_evaluator_gn results: objective fn. =

1.4073295457e-02

nlf2_evaluator_gn results: objective fn. gradient =
[1.4151199166e-01 2.6770433019e-01]

nlf2_evaluator_gn results: objective fn. Hessian =
[[3.5919755894e+00 -1.3186333660e+00

-1.3186333660e+00 5.3371309505e+00]]

Begin Function Evaluation 3

Parameters for function evaluation 3:
6.0233226286e-01 x1
7.1140623577e-01 x2

(text_book text_book.in.3 text_book.out.3)

Active response data for function evaluation 3:
Active set vector ={3 3 3}

3.1944760199e-02 least_sq_terml

7.1010369970e-03 least_sq_term2

6.0988322924e-03 least_sq_term3
[-2.5154811392e-01 -9.6143697434e-02] least_sq_terml gradient
[1.2046645257e+00 -5.0000000000e-01] least_sq_term2 gradient
[0.0000000000e+00 1.4228124715e+00] least_sq_term3 gradient

nlf2_evaluator_gn results: objective fn. =

1.1080881859¢-03

nlf2_evaluator_gn results: objective fn. gradient =
[1.0374463766e-03 4.1113775791e-03]

nlf2_evaluator_gn results: objective fn. Hessian =
[[3.0289861462e+00 -1.1562949942e+00

-1.1562949942e+00 4.5672778792e+00]]

Begin Function Evaluation 4

Parameters for function evaluation 4:
6.0157271127e-01 x1
7.1031375941e-01 x2

(text_book text_book.in.4 text_book.out.4)
Active response data for function evaluation 4:
Active set vector ={3 33}

3.2242004707e-02 least_sq_terml
6.7328472397e-03 least_sq_term2

Example Problems Textbook Example - Results 202

4.5456368072e-03 least_sq_term3
[-2.5299225122e-01 -9.7239696468e-02] least_sq_terml gradient
[1.2031454225e+00 -5.0000000000e-01] least_sq_term2 gradient
[0.0000000000e+00 1.4206275188e+00] least_sq_term3 gradient

nlf2_evaluator_gn results: objective fn. =

1.1055409135e-03

nlf2_evaluator_gn results: objective fn. gradient =
[-1.1276603567e-04 -8.7939264600e-05 |

nlf2_evaluator_gn results: objective fn. Hessian =
[[3.0231279737e+00 -1.1539436431e+00

-1.1539436431e+00 4.5552762115e+00]]

Begin Function Evaluation 5

Parameters for function evaluation 5:
6.0162216282e-01 x1
7.1034559141e-01 x2

(text_book text_book.in.5 text_book.out.5)

Active response data for function evaluation 5:
Active set vector ={3 33}
3.2226401354e-02 least_sq_terml
6.7764310912e-03 least_sq_term2
4.5908592356e-03 least_sq_term3
[-2.5289806109e-01 -9.7207644612e-02] least_sq_terml gradient
[1.2032443256e+00 -5.0000000000e-01] least_sq_term2 gradient
[0.0000000000e+00 1.4206911828e+00] least_sq_term3 gradient

nlf2_evaluator_gn results: objective fn. =

1.1055369511e-03

nlf2_evaluator_gn results: objective fn. gradient =
[7.4156799421e-06 2.6502438991e-06]

nlf2_evaluator_gn results: objective fn. Hessian =
[[3.0235086728e+00 -1.1540770759e+00

-1.1540770759e+00 4.5556255261e+00]]

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 5 total (5 new, 0 duplicate)
<<<<< Best design parameters =
6.0162216282e-01 x1
7.1034559141e-01 x2
<<<<< Best objective function =
1.1055369511e-03
Run time from MPI_Init to MPI_Finalize is 9.5173000000e-01 seconds

Example Problems Textbook Example - Results 203

Rosenbrock Example

Rosenbrock Problem Formulation

The Rosenbrock function (see [Gill, P.E., Murray, W., and Wright, M.H., 1981]) is a well known
benchmark problem for optimization algorithms. Its formulation can be stated as
minimize

f = 100(x,—x2)°+(1—=x,) (14)

This example problem may also be used to exercise least squares solution methods by recasting
the problem formulation into:

minimize
fo=§)2+ (f)2 (15)
where
f,=10(x,—X5) (16)
and
f,=1-x, (17)

are residual terms. In this case (unlike the least squares modification in Textbook Problem
Formulation on page 192), the 2 problem formulations are equivalent and will have identical
solutions.

Methods

In theDakota/test directory, theosenbrock executable (compiled from

rosenbrock.C) returns an objective function as computed from Eq. (14) for use with
optimization methods. Th®senbrock_lIs executable (compiled from

rosenbrock Is.C) returns two least squares terms as computed from Eqs. (16) and (17) for
use with least squares iterators. Both executables return analytic gradients of the function set
(gradient of the objective function imsenbrock , gradients of the least squares residuals in
rosenbrock_Is) with respect to the design variables. Tad&ota_rosenbrock.in

input file is used to solve both problems by toggling settings in the interface, responses, and
method specifications. To run the optimization solution, s&lestnbrock’ as the
analysis_driver in the interface specification, selectm_objective_functions to

be 1 in the responses specification, and select an unconstrained or bound-constrained optimizer
in the method specification (e.dgt_bfgs , optpp_bcg_newton), e.g.:

Example Problems Rosenbrock Example - Rosenbrock Problem Formulation 204

interface, \

application system, \
analysis_driver = ’'rosenbrock’
variables, \
continuous_design = 2 \
cdv_initial_point 0.8 0.7 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \

cdv_descriptor X1 'x2'

responses, \
num_objective_functions = 1 \
analytic_gradients \
no_hessians
method, \
optpp_bcg_newton, \
max_iterations = 500 \
convergence_tolerance = 1le-10
To run the least squares solution, selestenbrock_|s’ as theanalysis_driver in
the interface specification, selextm_least _squares_terms to be 2 in the responses

specification, and select a Gauss-Newton iterator in the method specification (i.e.,
optpp_g_newton oroptpp_bcg_newton), e.g.:

interface, \
application system, \
analysis_driver = 'rosenbrock_lIs’
variables, \
continuous_design = 2 \
cdv_initial_point 0.8 0.7 \

cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor X1 'x2’

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

method, \
optpp_bcg_newton, \
max_iterations = 500 \
convergence_tolerance = 1le-10

Results

The optimal solution, solved either as a least squares problem or an optimization problem, is:

X1 = 1.0

Xo = 1.0
with

f*=10.0

In comparing the two approaches, one would expect the Gauss-Newton approach to be more
efficient since it exploits the special-structure of a least squares objective function. From a good
initial guess, this expected behavior is observed. Startingddminitial _point =

0.8,0.7 ,theoptpp_bcg_newton method converges in only 3 function and gradient
evaluations while theptpp_bcg_newton method requires 14 function and gradient

Example Problems Rosenbrock Example - Results 205

evaluations to achieve similar accuracy. Starting from a poorer initial guess (e.g.,
cdv_initial_point=-1.2, 1.0 as specified iDakota/test/

dakota_rosenbrock.in), the trend is less obvious since both methods spend several
evaluations finding the vicinity of the minimum (total function and gradient evaluations = 24 for
optpp_bcg_newton and 29 foroptpp_bcg_newton). However, once the vicinity is

located, convergence is much more rapid with the Gauss-Newton approach (11 orders of
magnitude reduction in the objective function in 1 function and gradient evaluation) than with the
guasi-Newton approach (12 orders of magnitude reduction in the objective function in 10
function and gradient evaluations).

Shown below is the DAKOTA output for tloptpp_bcg_newton method starting from
cdv_initial_point =0.8, 0.7

MPI initialized with 1 processors.

Writing new restart file dakota.rst

Constructing Single Method Strategy...

no method_pointer: last specifications parsed will be used
methodName = optpp_bcg_newton

gradientType = analytic

hessianType = none

Running MPI executable in serial mode.

Running Single Method Strategy...

Begin Function Evaluation 1

Parameters for function evaluation 1:
8.0000000000e-01 x1
7.0000000000e-01 x2

(rosenbrock_Is /var/tmp/aaaa000Sg /var/tmp/baaa000Sg)
Removing /var/tmp/aaaa000Sg and /var/tmp/baaa000Sg

Active response data for function evaluation 1:
Active set vector ={3 3}
6.0000000000e-01 least_sq_terml
2.0000000000e-01 least_sq_term2
[-1.6000000000e+01 1.0000000000e+01] least_sq_terml gradient
[-1.0000000000e+00 0.0000000000e+00 | least_sq_term2 gradient

nlf2_evaluator_gn results: objective fn. =

4.0000000000e-01

nlf2_evaluator_gn results: objective fn. gradient =
[-1.9600000000e+01 1.2000000000e+01]

nlf2_evaluator_gn results: objective fn. Hessian =
[[5.1400000000e+02 -3.2000000000e+02

-3.2000000000e+02 2.0000000000e+02 1]

Begin Function Evaluation 2

Parameters for function evaluation 2:
9.9999528206e-01 x1
9.5999243139e-01 x2

(rosenbrock_Is /var/tmp/caaa000Sg /var/tmp/daaa000Sg)
Removing /var/tmp/caaa000Sg and /var/tmp/daaa000Sg

Active response data for function evaluation 2:
Active set vector ={3 3}

-3.9998132752e-01 least_sq_term1

4.7179400000e-06 least_sq_term2
[-1.9999905641e+01 1.0000000000e+01] least_sq_terml gradient

Example Problems Rosenbrock Example - Results 206

[-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

nlf2_evaluator_gn results: objective fn. =

1.5998506239e-01

nlf2_evaluator_gn results: objective fn. gradient =
[1.5999168181e+01 -7.9996265504e+00]

nlf2_evaluator_gn results: objective fn. Hessian =
[[8.0199245130e+02 -3.9999811282e+02

-3.9999811282e+02 2.0000000000e+02 1]

Begin Function Evaluation 3

Parameters for function evaluation 3:
9.9999904378e-01 x1
9.9999808275e-01 x2

(rosenbrock_Is /var/tmp/eaaa000Sg /var/tmp/faaa000Sg)
Removing /var/tmp/eaaa000Sg and /var/tmp/faaa000Sg

Active response data for function evaluation 3:
Active set vector ={3 3}

-4.8109144446e-08 least_sq_term1

9.5621999996e-07 least_sq_term2
[-1.9999980876e+01 1.0000000000e+01] least_sq_terml gradient
[-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

nlf2_evaluator_gn results: objective fn. =

9.1667117810e-13

nlf2_evaluator_gn results: objective fn. gradient =
[1.1923937841e-08 -9.6218288892e-07]

nlf2_evaluator_gn results: objective fn. Hessian =
[[8.0199847008e+02 -3.9999961752e+02

-3.9999961752e+02 2.0000000000e+02 1]

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 3 total (3 new, 0 duplicate)
<<<<< Best design parameters =
9.9999904378e-01 x1
9.9999808275e-01 x2
<<<<< Best objective function =
9.1667117810e-13
Run time from MPI_Init to MPI_Finalize is 7.8900400000e-01 seconds

Example Problems Rosenbrock Example - Results 207

Cylinder Head Example

Cylinder Head Problem Formulation

The cylinder head example problem arose as a simple demonstration problem for the
Technologies Enabling Agile Manufacturing (TEAM) project. Its formulation is stated as

minimize
i _1%horsepower L Warranty [(18)
250 100000 O
subject to
01 = Omax—0-0yieg =0 (19)
g, = 100000-warranty <0 (20)
gz =time . e —60<0 (21)
1.5<d; e < 2.164 (22)
0.0<flatness <4.0 (23)

This formulation seeks to simultaneously maximize normalized engine horsepower and engine
warranty over variables of valve intake diametggife) in inches and overall head flatness

(flatness) in thousandths of an inch subject to constraints that the maximum stress cannot
exceed half of yield, that warranty must be at least 100000 miles, and that manufacturing cycle
time must be less than 60 seconds. The objective function and constraints are related analytically
to the design variables according to the following simple expressions:

warranty = 100000+ 15000 4-flatness) (24)
time . ce = 45+ 4.5 4-flatness)t (25)

— + intake 4[]
horsepower 250+ 20 18333 1D (26)

_ 1
Omax = 750+ — = (27)
(t wan)
d: +d

twall = offset intake —offset exhaust _(ntake 2 exhaust) (28)

Example Problems Cylinder Head Example - Cylinder Head Problem Formulation 208

where the constants in Egns. (19) and (28) assume the following \@jjags: = 3000
offset jhake =3.25 ,offset oypaust =1.34 , anddeypaust = 1.556

Methods

In theDakota/test directory, thedakota_cyl _head.in input file is used to execute the

cylinder head example. This file is shown below:

interface, \
application system, \
asynchronous \
analysis_driver= ‘cyl_head’

variables, \
continuous_design = 2 \
cdv_initial_point 1.8 1.0\
cdv_upper_bounds 2.164 4.0\
cdv_lower_bounds 1.5 0.0\
cdv_descriptor ‘intake_dia’ ‘flatness’

responses, \
num_objective_functions =1 \
num_nonlinear_constraints = 3 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_step_size =1.e-4 \
no_hessians

method, \
npsol_sqgp \
convergence_tolerance = 1.e-8 \
linear_constraints = 1. 1. -3.7\
output verbose

The interface keyword specifies use of tlge head executable (compiled fromakota/
test/cyl_head.C) as the simulator. The variables and responses keywords specify the data
sets to be used in the iteration by providing the initial point, descriptors, and upper and lower
bounds for two continuous design variables and by specifying the presence of one objective
function, three constraints, and analytic gradients in the problem. The method keyword specifies
the use of thapsol_sgp method to solve this constrained optimization problem. No strategy
keyword is specified, so the defasihgle_method strategy is used.

Optimization Results

The solution for the constrained optimization problem is:
intake dia = 2.122
flatness = 1.769
with
fx=-2.461
g,* = 0.0 (active)
g,* = -0.3347 (inactive)

Example Problems Cylinder Head Example - Methods 209

g,* = 0.0 (active)

which corresponds to the following optimal response quantities:

warranty = 133472
cycle_time = 60
horse_power = 281.579
max_stress = 1500

The DAKOTA output follows:

MPI initialized with 1 processors.

Writing new restart file dakota.rst

Constructing Single Method Strategy...

no method_pointer: last specifications parsed will be used
methodName = npsol_sqgp

gradientType = analytic

hessianType = none

NPSOL option settings:

Verify Level =-

Major Print Level =20
Function Precision =1e-10
Linesearch Tolerance =0.9
Major Iteration Limit =100
Optimality Tolerance =1e-08

NOTE: NPSOL'’s convergence tolerance is not a relative tolerance.
See pp. 21-22 of NPSOL manual for description.

Derivative Level =3

Running MPI executable in serial mode.

Running Single Method Strategy...

NPSOL --- Version 4.06-2 Nov 1992

Begin Function Evaluation 1

Parameters for function evaluation 1:
1.8000000000e+00 intake_dia
1.0000000000e+00 flatness

(cyl_head /var/tmp/aaaa0010M /var/tmp/baaa0010M)

In cyl_head evaluator:

warranty = 145000

cycle_time = 68.3827

wall_thickness = 0.232

horse_power = 246.399

max_stress = 788.573

Removing /var/tmp/aaaa0010M and /var/tmp/baaa0010M

Active response data for function evaluation 1:
Active set vector ={3 333}
-2.4355973813e+00 obj_fn
-4.7428486677¢e-01 nin_conl
-4.5000000000e-01 nin_con2
1.3971143170e-01 nin_con3
[-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
[1.3855136438e-01 0.0000000000e+00] nin_conl gradient
[0.0000000000e+00 1.5000000000e-01] nin_con2 gradient
[0.0000000000e+00 -1.9485571585e-01] nin_con3 gradient

Example Problems Cylinder Head Example - Optimization Results 210

Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
0 20.0E+00 1-1.98878999E+00 3.9E-01 0.0E+00 0 4.6E+01F TF

Begin Function Evaluation 2

Parameters for function evaluation 2:
2.1640000000e+00 intake_dia
1.7169994018e+00 flatness

(cyl_head /var/tmp/caaa0010M /var/tmp/daaa0010M)

In cyl_head evaluator:

warranty = 134245

cycle_time = 60.5229

wall_thickness = 0.05

horse_power = 286.116

max_stress = 2538.85

Removing /var/tmp/caaa0010M and /var/tmp/daaa0010M

Active response data for function evaluation 2:
Active set vector ={333 3}

-2.4869127193e+00 obj_fn

6.9256958800e-01 nin_conl

-3.4245008973e-01 nin_con2

8.7142207939e-03 nin_con3
3644298963e-01 1.5000000000e-01] obj_fn gradient
9814239700e+01 0.0000000000e+00] nin_conl gradient
0000000000e+00 1.5000000000e-01] nin_con2 gradient

-4.
2.
0.
0.0000000000e+00 -1.6998301774e-01] nin_con3 gradient

——r—r—

1 11.0E+00 2-2.46707673E+00 6.9E-01 0.0E+00 0 6.8E+00F TF

Begin Function Evaluation 3

Parameters for function evaluation 3:
2.1407705098e+00 intake_dia
1.7682646453e+00 flatness

(cyl_head /var/tmp/eaaa0010M /var/tmp/faaa0010M)

In cyl_head evaluator:

warranty = 133476

cycle_time = 60.0029

wall_thickness = 0.0616147

horse_power = 283.581

max_stress = 1811.18

Removing /var/tmp/eaaa0010M and /var/tmp/faaa0010M

Active response data for function evaluation 3:
Active set vector ={333 3}

-2.4690845846e+00 obj_fn

2.0745219855e-01 nin_conl

-3.3476030320e-01 nin_con2

4.9104542814e-05 nin_con3
-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
1.4352331520e+01 0.0000000000e+00] nin_conl gradient
0.0000000000e+00 1.5000000000e-01] nin_con2 gradient
0.0000000000e+00 -1.6806368014e-01] nin_con3 gradient

——r—r—

Begin Function Evaluation 4

Parameters for function evaluation 4:
2.1607040498e+00 intake_dia
1.7242732458e+00 flatness

(cyl_head /var/tmp/gaaa0010M /var/tmp/haaa0010M)

In cyl_head evaluator:
warranty = 134136

Example Problems Cylinder Head Example - Optimization Results 211

cycle_time = 60.4487

wall_thickness = 0.051648

horse_power = 285.756

max_stress = 2399.55

Removing /var/tmp/gaaa0010M and /var/tmp/haaa0010M

Active response data for function evaluation 4:
Active set vector={3 333}
-2.4843831483e+00 obj_fn
5.9970320968e-01 nin_conl
-3.4135901313e-01 nin_con2
7.4787762078e-03 nin_con3
[-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
[2.6615351511e+01 0.0000000000e+00] nin_conl gradient
[0.0000000000e+00 1.5000000000e-01] nin_con2 gradient
[0.0000000000e+00 -1.6971201116e-01] nin_con3 gradient

2 014E-01 4-2.46179789E+00 6.0E-01 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 5

Parameters for function evaluation 5:
2.1381718203e+00 intake_dia
1.7683406996e+00 flatness

(cyl_head /var/tmp/iaaa0010M /var/tmp/jaaa0010M)

In cyl_head evaluator:

warranty = 133475

cycle_time = 60.0022

wall_thickness = 0.0629141

horse_power = 283.298

max_stress = 1757.23

Removing /var/tmp/iaaa0010M and /var/tmp/jaaa0010M

Active response data for function evaluation 5:
Active set vector={3 333}

-2.4679389967e+00 obj_fn

1.7148906598e-01 nin_conl

-3.3474889506e-01 nin_con2

3.6322686164e-05 nin_con3
3644298963e-01 1.5000000000e-01] obj_fn gradient
3341388781e+01 0.0000000000e+00] nin_conl gradient
0000000000e+00 1.5000000000e-01] nin_con2 gradient

[-4.
[1.
[O
[0.0000000000e+00 -1.6806081643e-01] nin_con3 gradient

Begin Function Evaluation 6

Parameters for function evaluation 6:
2.1523079940e+00 intake_dia
1.7406938490e+00 flatness

(cyl_head /var/tmp/kaaa0010M /var/tmp/laaa0010M)

In cyl_head evaluator:

warranty = 133890

cycle_time = 60.2818

wall_thickness = 0.055846

horse_power = 284.84

max_stress = 2106.81

Removing /var/tmp/kaaa0010M and /var/tmp/laaa0010M

Active response data for function evaluation 6:
Active set vector ={3 333}
-2.4782556582e+00 obj_fn
4.0454151196e-01 nin_conl
-3.3889592265e-01 nin_con2
4.6970356970e-03 nin_con3
[-4.3644298963e-01 1.5000000000e-01] obj_fn gradient

Example Problems Cylinder Head Example - Optimization Results 212

[2.0246335086e+01 0.0000000000e+00] nin_conl gradient
[0.0000000000e+00 1.5000000000e-01] nin_con2 gradient
[0.0000000000e+00 -1.6909862055e-01] nin_con3 gradient

3 083.7E-01 6-2.45857429E+00 4.0E-01 0.0E+00 06.8E+00 F TF

Begin Function Evaluation 7

Parameters for function evaluation 7:
2.1323270192e+00 intake_dia
1.7684707504e+00 flatness

(cyl_head /vartmp/maaa0010M /var/tmp/naaa0010M)

In cyl_head evaluator:

warranty = 133473

cycle_time = 60.0009

wall_thickness = 0.0658365

horse_power = 282.66

max_stress = 1649.15

Removing /var/tmp/maaa0010M and /var/tmp/naaa0010M

Active response data for function evaluation 7:
Active set vector ={333 3}

-2.4653685666e+00 obj_fn

9.9434951763e-02 nin_conl

-3.3472938744e-01 nin_con2

1.4466560964e-05 nin_con3
3644298963e-01 1.5000000000e-01] obj_fn gradient
1381130512e+01 0.0000000000e+00] nin_conl gradient
0000000000e+00 1.5000000000e-01] nin_con2 gradient

-4.
1.
0.
0.0000000000e+00 -1.6805591946e-01] nin_con3 gradient

——r—r—

4 01.0E+00 7-2.46038884E+00 9.9E-02 0.0E+00 06.8E+00 F TF

Begin Function Evaluation 8

Parameters for function evaluation 8:
2.1235901936e+00 intake_dia
1.7685568322e+00 flatness

(cyl_head /var/tmp/oaaa0010M /var/tmp/paaa0010M)

In cyl_head evaluator:

warranty = 133472

cycle_time = 60

wall_thickness = 0.0702049

horse_power = 281.707

max_stress = 1515.74

Removing /var/tmp/0aaa0010M and /var/tmp/paaa0010M

Active response data for function evaluation 8:
Active set vector ={3 333}

-2.4615425280e+00 obj_fn

1.0493396662e-02 nin_conl

-3.3471647517e-01 nin_con2

1.4443046759e-10 nin_con3
-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
9.0893472783e+00 0.0000000000e+00] nin_conl gradient
0.0000000000e+00 1.5000000000e-01] nin_con2 gradient
0.0000000000e+00 -1.6805267803e-01] nin_con3 gradient

——r—r—

Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
5 01.0E+00 8-2.46101307E+00 1.0E-02 0.0E+00 06.8E+00F TF

Begin Function Evaluation 9

Example Problems Cylinder Head Example - Optimization Results 213

Parameters for function evaluation 9:
2.1224357217e+00 intake_dia
1.7685568330e+00 flatness

(cyl_head /var/tmp/gaaa0010M /var/tmp/raaa0010M)

In cyl_head evaluator:

warranty = 133472

cycle_time = 60

wall_thickness = 0.0707821

horse_power = 281.581

max_stress = 1500.22

Removing /var/tmp/qaaa0010M and /var/tmp/raaa0010M

Active response data for function evaluation 9:
Active set vector={3 333}
-2.4610386667e+00 obj_fn
1.4914647635e-04 nin_conl
-3.3471647505e-01 nin_con2
9.9882324633e-12 nin_con3
[-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
[8.8325450545e+00 0.0000000000e+00] nin_conl gradient
[0.0000000000e+00 1.5000000000e-01] nin_con2 gradient
[0.0000000000e+00 -1.6805267800e-01] nin_con3 gradient

6 01.0E+00 9-2.46103129E+00 1.5E-04 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 10

Parameters for function evaluation 10:
2.1224188357e+00 intake_dia
1.7685568331e+00 flatness

(cyl_head /var/tmp/saaa0010M /var/tmp/taaa0010M)

In cyl_head evaluator:

warranty = 133472

cycle_time = 60

wall_thickness = 0.0707906

horse_power = 281.579

max_stress = 1500

Removing /var/tmp/saaa0010M and /var/tmp/taaa0010M

Active response data for function evaluation 10:
Active set vector={333 3}
-2.4610312969e+00 obj_fn
3.1248197141e-08 nin_conl
-3.3471647503e-01 nin_con2
-6.8171024381e-12 nin_con3
[-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
[8.8288585865e+00 0.0000000000e+00] nin_conl gradient
[0.0000000000e+00 1.5000000000e-01] nin_con2 gradient
[0.0000000000e+00 -1.6805267799e-01] nin_con3 gradient

7 01.0E+00 10-2.46103130E+00 3.1E-08 0.0E+00 0 6.8E+00 T TF

Begin Function Evaluation 11

Parameters for function evaluation 11:
2.1224188321e+00 intake_dia
1.7685568331e+00 flatness

(cyl_head /var/tmp/uaaa0010M /var/tmp/vaaa0010M)
In cyl_head evaluator:

warranty = 133472

cycle_time = 60

wall_thickness = 0.0707906

horse_power = 281.579

max_stress = 1500

Example Problems Cylinder Head Example - Optimization Results 214

Removing /var/tmp/uaaa0010M and /var/tmp/vaaa0010M

Active response data for function evaluation 11:

Active set vector={3 333}
-2.4610312954e+00 obj_fn
-5.3569115810e-10 nin_conl
-3.3471647503e-01 nin_con2
-6.8171024381e-12 nin_con3

[-4.3644298963e-01 1.5000000000e-01] obj_fn gradient

[8.8288578008e+00 0.0000000000e+00] nin_conl gradient

[0.0000000000e+00 1.5000000000e-01] nin_con2 gradient

[0.0000000000e+00 -1.6805267799e-01] nin_con3 gradient

8 O01.0E+00 11-2.46103130E+00 5.4E-100.0E+00 06.8E+O0TTT
Exit NPSOL - Optimal solution found.
Final nonlinear objective value = -2.461031
NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 11 total (11 new, 0 duplicate)
<<<<< Best design parameters =
2.1224188321e+00 intake_dia
1.7685568331e+00 flatness
<<<<< Best objective function =
-2.4610312954e+00
<<<<< Best constraint values =
-5.3569115810e-10
-3.3471647503e-01
-6.8171024381e-12
Run time from MPI_Init to MPI_Finalize is 1.6473130000e+00 seconds

Example Problems Cylinder Head Example - Optimization Results

215

Engineering Applications

Transportation Cask Example

In this example, use is made of C-shell scripting to coordinate pre-processing, invocation of
analyses, and post-processing.

Work in progress

Alternate with workdir tagging: radar load spreader plate

GOMA/EXODUS Application Example

This tutorial is designed to give an experienced GOMA/EXODUS jockey an introduction into
tying the DAKOTA iterator toolkit to the GOMA simulation code. In addition to understanding
GOMA and the EXODUS file format, the user is assumed to have an understanding of a
programming language such as C or FORTRAN. Although many of the examples will be
presented in C, the programs can just as easily be written in FORTRAN.

Standard tet_book exkample
Problem formulation:

The problem to be solved in this portion of the tutorial is the text_book example:

4 4
f=gy-1)"+(xy-1) (29)
2 X5
= —_ <
g = X3 2_0
2

subject to simple bounds on the variablgsaxd % range between -10 and +10.

Dakota_sample.in problem description file:

Sections are delimited by newline characters. Therefore, to continue a section onto multiple
lines, the back-slash character is needed to escape the newline. Input is order-independent and
white-space insensitive. Keywords may be abbreviated so long as the abbreviation is unique.
Comments are preceded by #.The definitive resource for input grambekata/src/

dakota.input.spec

DAKOTA INPUT FILE - dakota_textbook.in
Interface section specification

Example Problems Engineering Applications - Transportation Cask Example 216

NOTES: Interfaces are 1 of 3 main types: application interfaces are used
for interfacing with simulation codes, approximation interfaces use
inexpensive design space approximations in place of expensive
simulations, and test interfaces use linked-in test functions for
algorithm testing purposes (to eliminate system call overhead).
Application interfaces can be further categorized into system and
direct types. The system type uses system calls to invoke the
simulation, while the direct type uses the same constructs as the test
interface for linked-in simulation codes. Both application interface
types use analysis_driver, input_filter, and output_filter
specifications. The system type additionally uses parameters_file,
results_file, analysis_usage, file_tag, and file_save specifications.
The analysis_driver provides the name of the analysis executable,
driver script, or linked module; the input_filter and output_filter
provide pre- and post-processing for the analysis in the procedure of
mapping parameters into responses (default = NO_FILTER); the
parameters_file and results_file are data files which Dakota creates
and reads, respectively, in the system call case (default = Unix temp
files); analysis_usage defines nontrivial command syntax (default =
standard syntax), file_tag controls the unique tagging of data files
with function evaluation number (default = no tagging), and file_save
controls whether or not file cleanup operations are performed (default
= data files are removed when no longer in use). Most settings are
optional with meaningful defaults as shown above. Refer to the
Interface Commands section in the User’s Instructions manual for
additional information.

HHEHFHFHFHFH TR

interface,\
application system,\
input_filter = ‘NO_FILTER\
output_filter = ‘NO_FILTER!\
analysis_driver = ‘text_book’\
parameters_file = ‘text_book.in"\
results_file = ‘text_book.out'\
analysis_usage = ‘DEFAULT\
file_tag\
file_save

Variables specification
NOTES:A variables set can contain design, uncertain, and state variables.
Design variables are those variables which an optimizer adjusts in
order to locate an optimal design. Each of the n design parameters
can have an initial point, a lower bound, an upper bound, and a
descriptive tag. Uncertain variables are those variables which are
characterized by probability distributions. Each uncertain variable
specification can contain a distribution type, a mean, a standard
deviation, a lower bound, an upper bound, a histogram filename and a
descriptive tag. State variables are “other” variables which are to
be mapped through the interface. Each state variable specification
can have an initial state and a descriptor. State variables provide a
convenience mechanism for parameterizing additional model inputs, such
as mesh density, solver convergence tolerance and time step controls,
and will be used to enact model adaptivity in future strategy
developments.

HHEHFHFHFHHEHTHH

variables,\
continuous_design = 2\
cdv_initial_point 0.9 1.1\
cdv_upper_bounds 5.8 2.9\
cdv_lower_bounds 0.5 -2.9\
cdv_descriptor ‘X1 'x2'

Responses specification
NOTES: This specification implements a generalized Dakota data set by
specifying a set of functions and the types of gradients and hessians
for these functions. Optimization data sets require specification of
num_objective_functions, num_linear_constraints, and
num_nonlinear_constraints. Multiobjective opt. is not yet supported,
so num_objective_functions must be = 1. Uncertainty quantification
data sets are specified by num_response_functions. Nonlinear least
squares data sets are specified with num_least_squares_terms.
Gradient type specification may be no_gradients, analytic_gradients,

HHEHHHHHH

Example Problems Engineering Applications - GOMA/EXODUS Application Example 217

numerical_gradients or mixed_gradients:

> no_gradients is invalid with gradient-based opt. methods
> no_gradients or analytic_gradients are complete specifications
> if numerical_gradients, then:

>> method_source = vendor OR dakota

>> interval_type = forward OR cental

>> fd_step_size = <float>

are additional optional parameters in the specification.

> mixed_gradients uses id_numerical & id_analytic lists to specify
the gradient types for different function numbers. This capability
is not yet completely implemented within the Iterators.
Hessian type specification may currently be no_hessians or
analytic_hessians. The only optimizers to currently support
analytic_hessians are the OPT++ full Newton methods.

HHEHFHFHHHHEH TR

responses,\
num_objective_functions = 1\
num_linear_constraints = 0\
num_nonlinear_constraints = 2\
analytic_gradients\
no_hessians

Strategy specification

NOTES: Contains specifications for hybrid, SAO, and OUU strategies. The
single_method strategy is a “fall through” strategy, in that in only

invokes a single iterator. If no strategy specification appears, then

single_method is the default.

strategy,\
single_method

Method specification

NOTES: method can currently be dot_frcg, dot_mmfd, dot_bfgs, dot_slp,
dot_sqp, npsol_sqp, optpp_cg, optpp_g_newton, optpp_g_newton,
optpp_newton, optpp_fd_newton, optpp_ba_newton, optpp_baq_newton,
optpp_bc_newton, optpp_bcg_newton, optpp_bc_ellipsoid, optpp_pds,
optpp_test_new, sgopt_pga_real, sgopt_pga_int, sgopt_coord_ps,
sgopt_coord_sps, sgopt_solis_wets, sgopt_strat_mc, nond_probability,

nond_mean_value, or parameter_study. Most method control parameters

are optional with meaningful defaults, although sgopt_coord_ps,

sgopt_coord_sps, parameter_study, nond_probability, and

nond_mean_value have some required control parameters. Default values

for optional parameters are defined in the DataMethod class

constructor and are documented in the Method Commands section of the
User’s Instructions manual.

HHFHFHTHHHHHR

method,\
dot_sqgp,\
max_iterations = 50,\
convergence_tolerance = 1e-4\
output verbose\
optimization_type minimize

Simulator file text_book.C:

This simple application program reads the parameters and writes the responses directly;
therefore, the NO_FILTER option is be used. The output must be formatted based on the

DakotaResponse 10 operators.

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <math.h>
#include <rw/cstring.h>

#ifdef SYMANTEC

#include <console.h>
#endif

Example Problems Engineering Applications - GOMA/EXODUS Application Example 218

double eval(const double* x, int len);
int main(int argc, char** argv)

{
#ifdef SYMANTEC
argc = ccommand(&argv);

for(int num=0; num<argc; num++) {
cout << argv[num] << **

cout << ‘\n’;
#endif

ifstream fin(argv[1]);
ofstream fout(argv[2]);

/I Get the first line and use info for array allocation

int num_vars, num_fns;

RWCString vars_text, fns_text;

fin >> num_vars >> vars_text >> num_fns >> fns_text;

/I Get the parameter vector and ignore the labels
/Ivector<double> x(num_vars);
double* x = new double [num_vars];
inti;
for(i=0; i<num_vars; i++) {
fin >> X[iJ;
fin.ignore(256, \n’);
}

/I Get the ASV vector and ignore the labels
int* ASV = new int [num_fns];
for(i=0; i<num_fns; i++) {

fin >> ASVIi];

fin.ignore(256, \n’);

/I Compute the results and output them directly to argv[2] (the NO_FILTER
I/l option is used). Response tags are now optional; output them for ease
/I of results readability.

fout.precision(10);

fout.setf(ios::scientific);

fout.setf(ios::right);

[Fxxx £

if (ASV[O] =1 ASV[O] =3 || ASV[0]==5 || ASV[0]==7)
fout << * ‘ << eval(x, num_vars) << “fin";

// *kkk Cl

if (num_fns>1) {
if (ASV[l] =1l AsV[1]= 3 [| ASV[1]==5 || ASV[1]==7)
fout < < (X[0]*x[0] - 0.5*x[1]) << “ c1\n";

// *kkk CZ
if (num_fns>2) {
if (ASV[2 =1 ASV[2 3 || ASV[2]==5 || ASV[2]==7)

fout < < (X[1]*x[1] - 0.5) <<“c2\n";
[**** dfldx:
if (ASV[0]==2 || ASV[0]==3 || ASV[0]==6 || ASV[0]==7) {
fout <<*[*

for (i=0; |<num_vars, i++)
fout << 4. *pow(x[i]-1,3) << “*;
fout << “\n";

[**** dcl/dx:
if (num_fns>1) {
if (ASV[1]==2 ||ASV[1] 3 ||ASV[1] =6 || ASV[1]==7) {
fout << [" << 2.*x[0] << “
for (i=3; i<=num_vars; i++)
fout << ** << 0.0;

Example Problems Engineering Applications - GOMA/EXODUS Application Example 219

fout << “J\n";

}

/[**** dc2/dx:
if (num_fns>2) {
if (ASV[2]==2 || ASV[2]==3 || ASV[2]==6 || ASV[2]==7) {
fout << [“ << 0.0 << “*“ << 2.*x[1];
for (i=3; i<=num_vars; i++)
fout << ** << 0.0;
fout << “\n”;

}

[***x dn2fldx”~2: (full Newton unconstrained opt.)
if (ASV[0]>=4) {
fout << “[[
for (i=0; i<num_vars; i++)
for (int j=0; j<num_vars; j++)
if (i==])
fout << 12.*pow(x[i]-1,2) << “*;
else
fout << 0. <<%
fout << “J]\n";

[[**** dh2¢1/dx~2: (ParamStudy testing of multiple Hessian matrices)
if (num_fns>1) {
if (ASV[1]>=4) {
fout << “[[%
for (i=0; i<num_vars; i++)
for (int j=0; j<num_vars; j++)
if (I==0 && j==0)
fout << 2. <<**,
else
fout << 0. <<* ",
fout << “J]\n”;

}

[[**** dnh2c2/dx~2: (ParamStudy testing of multiple Hessian matrices)
if (num_fns>2) {
if (ASV[2]>=4) {
fout << “[[%
for (i=0; i<num_vars; i++)
for (int j=0; j<num_vars; j++)
if (I==1 &&j==1)
fout << 2. <<* ",
else
fout << 0. <<* ",
fout << “J]\n”;

}

fout << flush;

delete [] x;

delete [] ASV;

return O;
//double eval(const vector<double>& x)
double eval(const double* x, int len)

double value=0;

for(int i=len; i--;) {

value += pow(x[i]-1, 4);

return value;

Example Problems Engineering Applications - GOMA/EXODUS Application Example 220

Invokation of text_book:

The command syntax which DAKOTA will use is as shown
below. Parameters and results file names will be passed on the
command line to the specified executable and file tagging will be
employed to keep the file names unique. The names of the
parameters and results files are passed on the command line for
the convenience of the application developer, since these
arguments can be used to remove hard coding of file names and
improve generality:

text_book text_book.in.1 text_book.out.1

The text_book.in.1 parameters file is:

2 variables 3 functions

9.0000000000e-01 x1

1.1000000000e+00 x2
1ASV_ 1
1ASV 2
1ASV_3

and the text_book.out.1 results files is:

2.0000000000e-04 f
2.6000000000e-01 c1
7.1000000000e-01 c2

Results:

The dot_sqgp method converges to the optimal solution in 17 total function evaluations when

foward finite differences are used

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 17 total (16 new, 1 duplicate)
<<<<< Best design parameters =
5.9442052455e-01 x1
7.0668310706e-01 x2
<<<<< Best objective function =
3.4460496673e-02
<<<<< Best constraint values =
-5.7935237028e-06
-5.9898619602e-04

Example t&t_book recast in GOMA format: Filter Introduction

There are several ways of interfacing DAKOTA with a simulation code. The method used here
applies DAKOTA's 1-piece Interface capability. For this method DAKOTA makes one system
call per function evaluation and all control over the evaluation is given to the user. DAKOTA
also has a 3-piece Interface capability which performs separate system calls for the input filter,
simulation code, and the output filter, in that order, to evaluation of the cost function and
constraints. In the optimization problems described here, the evaluation of the cost function is

Example Problems Engineering Applications - GOMA/EXODUS Application Example 221

performed by a combination of C programs and a supervisory UNIX shell program using the 1-
piece Interface capability.

Figure 1 outlines how variables and response data are passed as files and how the different codes
interact. A DAKOTA input file (e.gdakota_sample.in) specifies control parameters for

the DAKOTA optimization run such as names of the variables and responsardihes.in

andresults.out , respectively, the number of design variables, their bounds and initial

values, information concerning the number of constraints and how gradients are calculated, and
the optimization method desired.

params.in (DAKOTA results.out

cost.sh

Figure 1. DAKOTA interface scheme

Just prior to requesting a function evaluation, DAKOTA writes theofilams.in . This file

contains the current values of the design variables aadtae set vectorcode request for

values of the function and constraints, their gradients, and/or the Hessian matrix. DAKOTA then
spawns a system call apdrams.in is read by the user’s shell prograost.sh . The shell
program is fairly simple in that all it does is exeadutdfilt.c , GOMA, andout_filt.c

in the appropriate order.

The input filter programin_filt.c , places design variables identified in pErams.in

into a file that is formatted for use by APREPRO. This file is “included” into the mesh generator
file or into the GOMA input deck. GOMA is then run and an EXODUS file is generated. The
output filter programout_filt.c , then reads the EXODUS file, extracts the necessary
results, computes the cost function and the value of the constraints, and then writes the file
results.out in DAKOTA readable format.

The programén_filt.c andout_filt.c are written in a general format. The input filter

can be run without any modification in most optimizations. A skeleton output filter is provided
that only requires the subroutines to evaluate the cost functions and the constraints. The code for
writing the fileresults.out file is also provided.

Example Problems Engineering Applications - GOMA/EXODUS Application Example 222

DAKQOTA Filter Tutorial
Thetext_book example will be revisited in this portion of the

tutorial, and will be recast in the form used by the GOMA
applications. The problem formulation, as before, is

=g -0+ 0p-1)° (30

2 X2
= X,——=<0
91 = X175

g, = X5-0.5<0

subject to simple bounds on the variablesandx, which range between -10 and +10. The
following steps are used to generate a 3-piece interface.

1. Change directories into the “tutorial” directory (this location will depend on the course you
are taking and how you installed your software).

2. You will notice the directory contains five files: filt.c , out_filt.c ,
dak_goma.h ,cost.sh , andtut.in . The filetut.in is the DAKOTA input
specification as discussed earlier. Issue the following commands:

more tut.in

The first part of the file defines how the DAKOifAerface Is set up. A slash, at the end
of a line signifies a continuation. It must be present immediately before any carriage return
prior to the end of a keyword specification (engerface , method , variables ,...)
This syntax is necessary because the parser detects keyword input completion with a newline,
so newlines entered for readability must be escaped with a ‘\'. Note that the communication
files are set up to be nampdrams.in andresults.out . The cost function is
evaluated in the fileost.sh , which is called whenever DAKOTA issues the command

cost.sh params.in results.out

to the operating system. The shell functomst.sh must therefore be coded with this in
mind (as we will see next).

interface, \
application system, \
input_filter = ‘NO_FILTER’ \
output_filter = ‘NO_FILTER’ \
analysis_driver= ‘cost.sh’ \
parameters_file= ‘params.in’ \
results_file= ‘results.out’ \
analysis_usage = ‘DEFAULT’

Next, the design variables are set up. Note that there are two design vaxiahledx,,

and the starting point is (2, 2). Each variable may range between -10 and +10.

variables, \
continuous_design = 2 \

Example Problems Engineering Applications - GOMA/EXODUS Application Example 223

cdv_initial_point 20 2.0\
cdv_upper_bounds 10.0 10.0\
cdv_lower_bounds -10.0 -10.0\
cdv_descriptor X1 'x2'

The response specification describes the number of constraints and the source of the
gradients. In this problem and in the problems utilizing GOMA, the gradients are calculated

using a forward difference scheme:

responses, \
num_objective_functions =1
num_linear_constraints = 0
num_nonlinear_constraints = 2
numerical_gradients \

method_source vendor \

interval_type forward \

fd_step_size = 0.001 \
no_hessians

- -

The last portion selects the optimization technique to be used.
method, \
dot_sqp, \
max_iterations = 50, \
convergence_tolerance = 1e-8 \
output verbose \
optimization_type minimize

3. Now execute the command:
more cost.sh

This file is the supervisory file that controls the cost function evaluation. This simple

example has no GOMA evaluation.

#! /bin/csh -f

#

This shell file evaluates the cost function
for a dakota run

#

in_filt $argv[1] out.app

GOMA run goes here!!
out_filt $argv[1] $argv[2]

The input filter, in_filt.c , places the design variables identified in perams.in into
a file,out.app . The fileout_filt.c will take the fileout.app and evaluate the cost
function then write the fileesults.out . The first line of the fileost.sh is necessary

for the shell to execute correctly. The variallasgv[1l] and$argv[2] refer to the first
argument and the second argument in the call statement.

4. Now look at the input filter using the command:
more in_filt.c

The first portion of the file sets up various definitions and prototypes the functions used in the
program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

void input_filter(FILE *input_file, FILE *param_file);

Example Problems Engineering Applications - GOMA/EXODUS Application Example 224

The program is controlled fromain() . This routine performs error checking on the
number of arguments used to call the program, oparans.in for reading and
out.app for writing and calls the subroutine to perform the filtering operation,
input_filt()

void main(int argc,char *argv[])

FILE *input_file, *param_file;
if (argc<2)

printf(ONeed an output filename, exiting\nO);
exit(-1);
}

if ((input_file=fopen(argv[1],0r0)) == NULL)

printf(OCouldn®t open file: %s exiting.\nO,argv[1]);
exit(-1);
}

param_file=fopen(argv[2],0w0);

input_filter(input_file, param_file);
exit(0);

}

The first line ofparams.in specifies the number of design variablesparam) and a

string fag). The nexn_param lines are the value of each of the design variables with an
identification tag. The last lines are the ASV for the function and each of the constraints.
The ASV can be ignored in this input filter since only function values will be returned. The

initial params.in file for this problem is listed below:
2 variables 3 functions
2.0000000000e+00 x1
2.0000000000e+00 x2
1ASV_1
1ASV_2
1ASV_3
The last portion of the fila_filt.c is the input filter subroutine. It just reads
params.in and writeout.app using the format in the above paragraph.
void input_filter(FILE *input_file, FILE *param_file)
{
inti, n_param,n_g;

float dum_param;
char tag1[10],tag2[10];

fscanf(input_file,”%d %s %d %s”,&n_param,tagl,&n_g,tag2);
for (i=0;i<n_param;i++)

fscanf(input_file,"%f %s”,&dum_param,tagl);
fprintf(param_file,"#{%s = %f}\n",tag1,dum_param);
}

}

The contents of the fileut.app will look something like:

#{x1 = 2.000000}
#{x2 = 2.000000}

Example Problems Engineering Applications - GOMA/EXODUS Application Example 225

You will recognize this as input for APREPRO.

5. The final file is the output filteoqt_filt.c). Normally, it reads an EXODUS file to get
the results of a GOMA run. In this case, thedile.app will represent the EXODUS file
to simplify the description of the filters. As witih filt.c , the first lines set up

definitions and prototypes for the remaining code.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define NUM_PARAM 2
#define MAX_LINE 80

float cost_fun(FILE *exoid);
float *asv_read(FILE *input_file,int *n_param, int *n_g, int **asv);

void output_filter(int *asv, int n_param, float *params, int n_g, FILE

*output_file);
Themain() routine inout_filt.c once again controls the filter process as with
in_filt.c . First some error checking is performed to insure the correct number of
arguments are being passed. Next the iggams.in and results.out are opened. The

remaining functions are the meat of the program and will be discussed next.
int main(int argc,char *argvf[])

int *asv, n_param,i, n_g;

float *params;

FILE *input_file, *output_file;

if (argc<3)

printf(“Need both input and output files specified, exiting \n”);
exit(-1);

input_file=fopen(argv[1],r");

output_file=fopen(argv[2],"w");
params=asv_read(input_file,&n_param,&n_g,&asv);
output_filter(asv, n_param, params, n_g, output_file);

exit(0);
}

The subroutin@sv_read() reads th@arams.in file returning the ASV information
and the values of the parameters. This allows the program to correctly determine what
DAKOTA is requesting and to allow the parameters to be available for the cost function and
the constraint evaluation. The ar@gy[] and the arraparams|[] are alloced in
asv_read() . Thisis done here with tlaalloc() statement.

float *asv_read(FILE *input_file, int *n_param, int n_g, int **asv)

'cnr:a{’r junk1[MAX_LINE],junk2[MAX_LINEJ;

float *params;

fscanf(input_file,0%d %sO,n_param,junkl,n_g,junk2);
*Nn_g=*n_g-1,;

Example Problems Engineering Applications - GOMA/EXODUS Application Example 226

params= (float *)calloc(*n_param, sizeof(float));
*avs=(int *)calloc(*n_g +1, sizeof(int));

for (i=0:i<*n_param;i++) fscanf(input_file,0%f %s\nO,¶ms]i], junk);
for (i=0;i<=*n_g;i++)

fscanf(input_file,0%d %s\nO,&(*asv)[i],junkl);
fclose(input_file);

return(params);

The next subroutine is the actual output filtast(filt.c). This subroutine opens the
EXODUS file (in this caseut.app) and evaluates the constrairgh)_g] and the cost
function,J_cost . In this example the cost function is evaluated using the rozdsté)

and the constraints are just combinations of the parameters. The remaining code preforms
error checks on the ASV to be sure that the DAKOTA input specification is correct as far as
the gradients and Hessians that can be provided by the output filter. It also writes out the

results.out file with the appropriate information.

void output_filter(int *asv, int n_param, float *params, int n_g, FILE
*output_file)

inti;

float J_cost;

float *g;

FILE *exoid;

g=(float *)calloc(n_g ,sizeof(float));

exoid=fopen(Oout.app0,0rO);
/* determine cost function and constraints*/

g[0] = params[0]*params[0] - params[1]/2.;
g[1] = params[1]*params[1] -0.5;

J_cost = cost_fun(exoid);

[* write dakota output file */

if (asv[0]>3)
printf(OHessian is not available, exiting\nO);
exit(-1);

if (asv[0]>2)
printf(OGradient is not available, exiting\nO);
exit(-1);

if (asv[0]==1 || asv[0]==3 ||asv[0]==5)
{printf(output_file,c')%g fn0,J_cost);

for (i=1;i<=n_g;i++)
if (asv[i]==1 || asv[i]==3 || asvl[i]==5)
fprintf(output_file,0%g c%d\nO,g[i-1], i);
else

{ .)
printf(ONumber of parameters is probably wrong: exiting.\nO);
exit(-1);

}

}

Example Problems Engineering Applications - GOMA/EXODUS Application Example 227

free(g);
}

The final routine evaluates the cost function. In this case, this routine is exceptionally simple.

It just reads the file out.app and runs the parameters through a formula:

float cost_fun(FILE *exoid)
{

int i;
float xiINUM_PARAM], J_cost, a, b;
char cdum|2];

for (i=0;i<NUM_PARAM;i++)

{

fscanf(exoid,"#{%s = %f}\n”",cdum,&x[i]);
printf(“ x[%d] = %g \n",i,x[i]);

}

a=(x[0]-1.);
b=(x[1]-1.);

J_cost = a*a*a*a + b*b*b*b;

return J_cost;

6. To compile a program with EXODUS subroutines in it, excute a command similar to:
cc -o in_filt in_filt.c -lexollv2c -Inetcdf -Insl -Im

7. Now the optimization can be run. To execute the optimization, issue the command:
dakota -i tut.in

Wait until the thing finishes and enjoy the results.

Dryer Design Example
This section presents an extension of the tutorial problem to an

example problem that you care about. The shell program changes
trivially, the input filter doesn’t change at all, and only the cost
function evaluation changes in the output filter. The problem that
is being solved is the multilayer drying problem shown in Figure
2. The one dimensional problem has two solvents and a substrate.
The cost function is the concentrationsaflvent 0 at the end

of the simulation, which for this case is 200 sec. The design
variable is the oven temperature, which has a constraint of 370K
to prevent boiling.

Example Problems Engineering Applications - GOMA/EXODUS Application Example 228

T_inf T_init

e

Solvent 1

Solvent 0

Substrate

Figure 2 Drying Problem setup

Dryer Design Tutorial:

1. There are a few differences in the input specification to DAKOTA. The specification is in
dryer.in . The first is the change in the name of the analysis driver:
analysis_driver= ‘dryer.sh’

The variable description also changes:

variables, \
continuous_design = 1 \
cdv_initial_point 300.0\
cdv_upper_bounds 600.0 \
cdv_lower_bounds 0.\
cdv_descriptor ‘T_inf’
The final change is in the responses section. Here the number of constraints must be changed

to reflect the current problem:
num_nonlinear_constraints = 1 \
2. The shell functiomryer.sh is identical tacost.sh described above except for the

GOMA evaluation. To look at the file execute:
more dryer.sh
The file looks like
#! /bin/csh -f
#
#This shell file evaluates the cost function
#for a dakota run

#
in_filt $argv[1] dryer.app

goma -a -i ml_input -se stderr -so stdout
dryer $argv[1] $argv[2]>>& goma.src

3. The input filter is identical. To check this execute:
more in_filt.c

Note that the output of the input filter is the filger.app as can be seen from the file
dryer.sh , which contains the oven temperature. This file is read by the GOMA input file
Defs.app . Check this file now to see the include statement at the top of the file.

Example Problems Engineering Applications - GOMA/EXODUS Application Example 229

4. The simulation is identical to the templdtger.ml provided to you in your distribution.
If you are not familiar with it, become familiar with it.

5. The major changes are in the output filtyer.c for this problem. Only the cost function
evaluation will be discussed. The remaining code is as it was described above. Any
variables in all capital letters are defined in the header.

The cost function requires interrogating the EXODUS file that is generated by GOMA for the
concentration of the solveMD at a node near the substrate (node 8). Open the file
dryer.c by executing:

emacs dryer.c
Move the cursor down to the portion of the code where the funatiput_filter() is
defined. After the definition of the necessary variables, the first line of code opens the

EXODUS file using an EXODUS provided subroutine:

/* page 25 of SAND92-2137 */
/* Open file */

CPU_word_size=sizeof(float);
I0_word_size=0;

exoid=ex_open(filename,EX_READ,&CPU_word_size,&lO_word_size,&version);

Note that the comments give the reference page in the EXODUS users manual which is
available on-line dhttp://sass577.endo.sandia.gov/SEACAS/SEACAS.html

Theexoid output is used to reference the file. It is of tyge . Now the cost function
cost_fun() is called with the argument beiegoid . After some variable definitions,
the number of variables are determined from the database and the array for the variable
names is set up:

/* page 133 of SAND92-2137 */

error=ex_get_var_param(exoid,”n”,&num_nodal_var);

for (i=0;i<num_nodal_var;i++)
var_namesJi] = (char *) calloc((MAX_STR_LNG+1),sizeof(char));

Next, the variable names are extracted and the index of the appropriate vifialse,
determined. The variables are referenced in the database by their index and this will be

needed when extracting the concentration time history.

/* page 137 of SAND92-2137 */
error=ex_get_var_names(exoid,”n”",num_nodal_var,var_names);

/* find the velocity variables */
for (i=0;i<num_nodal_var;i++)

{
if (strcmp(CONC,var_namesJi])==0) CONC_var_index=i+1;
}

Next, the number of time steps are determined and the arrays to hold all the time step values
and the values of the concentration history at node 8 are allocated. The array times will

contain the time axis.

/* page 41 of SAND92-2137 */
/* determine number of time steps and use the last one */
error=ex_inquire(exoid,EX_INQ_TIME,&num_time_steps,&fdum,cdum);

Example Problems Engineering Applications - GOMA/EXODUS Application Example 230

concentration = (float *) calloc(hum_time_steps,sizeof(float));
times = (float *) calloc(num_time_steps,sizeof(float));

/* page 143 of SAND92-2137 */
error = ex_get_all_times(exoid,times);

Now the concentration history at node 8 is read and the last value of the concentration is used
for the cost function
I* page 167 of SAND92-2137%/

error = ex_get_nodal_var_time(exoid, CONC_var_index,NODE,1,

num_time_steps,concentration);
printf(* %g %g \n",concentration[0],concentration[num_time_steps-1]);
J_cost=concentration[num_time_steps-1];

6. To compile a program with EXODUS subroutines in it, execute a command similar to:
cc -o in_filt in_filt.c -lexollv2c -Inetcdf -Insl -Im

7. To run the simulation, just type:
dakota -i dryer.in

8. Sit back and watch it run.
Dryer Parameter Study in Fortran:

This section will go through an example of a FORTRAN interface between DAKOTA and

GOMA. The example will be a multi-dimensional parameter study using the same cost function
as the previous example, namely the concentration of the solvent at the substrate at the end after
200 sec. The two variables that will vary are the oven temperaturd, , and the convection
coefficient,Kh.

1. The input specificatiomyyer.in , for DAKOTA is as follows:

interface, \
application system, \
input_filter = ‘NO_FILTER’ \
output_filter = ‘NO_FILTER’ \
analysis_driver= ‘dryer.sh’ \
parameters_file= ‘params.in’\
results_file= ‘results.out’\
analysis_usage = ‘DEFAULT’
variables, \
continuous_design = 2 \

cdv_initial_point 300.0 -50\
cdv_upper_bounds 600.0 -50\
cdv_lower_bounds 0. O\
cdv_descriptor ‘T_inf" 'Kk’

responses, \
num_objective_functions =1 \
num_linear_constraints = 0 \
num_nonlinear_constraints = 1 \
no_gradients \
no_hessians

strategy, \

single_method

method, \
multidim_parameter_study\

Example Problems Engineering Applications - GOMA/EXODUS Application Example 231

partitions = 10 10

The main difference between this file and the ones discussed in the previous examples is the
variables section and themethod section.

The next file necessary is the shell diger.sh ~ which runs the simulation and controls
the cost function evaluation. It is pretty simple and has been discussed in both the previous
examples:

ﬁ! /bin/csh -f

#This shell file evaluates the cost function
#for a dakota run

#

in_filt

goma -a -i ml_input -se stderr -so stdout

dryer

2. The input filter in FORTRAN is a little less general than the one written in C. Itis not easy
to pass command line arguments in FORTRAN and therefore the files read and written by the
input filter have to be hard coded. It is imperative that the files coded to be read in the input
filter are identical to those used in the dakota input specification. This means that
file_tag andfile_save cannot be used, nor can the default file names for the
parameter file or the results file.

program in_filt

This is a poor man’s version of
the ¢ program in_filt.c
LEARN C!!!

O0O000

integer i, nparam, nfun
real dparam
character*10 tag, junk

open(22,file="params.in’,status="old’")
open(33,file="dryer.app’,status="unknown’)

read(22,*) nparam, tag, nfun, junk

do 10 i=1, nparam
read(22,*) dparam,tag
write(33,’(1x,a2,a10,a1,f16.8,al)’) "#{",tag,"=",dparam,"}"
10 continue

end

3. The function that evaluates the cost functidryer.f , is now described. As with the input
filter the filenames have to be hard coded, limiting the generality of the code. The main

program does little except call the appropriate subroutines in the appropriate order

program dryer

include ‘/usr/local/inc/exodusll.inc’
character*12 infile, outfile

integer asv(3), nparam, ng

real params(2)

infile = ‘params.in’
outfile = ‘results.out’

call asvrd(infile, nparam, ng, asv, params)

Example Problems Engineering Applications - GOMA/EXODUS Application Example 232

call outfilt(asv, nparam, params, ng, outfile)

stop
end

The first subroutineasvrd() , reads the parameters fipgrams.in , and determines the
values of the parameters and the ASV

subroutine asvrd(infile, nparam, ng, asv, params)
character*12 infile

character*50 junk, junkl

integer i, nparam, ng, asv(3)

real params(2)

open(unit=22, file=infile, status="old")
read(22,*) nparam, junk, ng, junkl
ng=ng-1

do 10 i=1,nparam
read(22,*) params(i), junk
10 continue

do 20 i=1,ng+1
read(22,*) asv(i), junk
write(*,*) asv(i), junk
20 continue

close(22)
end

The next subroutineutfilt() , opens the EXODUS database and controls the writing of
the file,results.out for DAKOTA to read. It does a lot of checks to make sure that the
function values and their gradients that DAKOTA asks for through the ASV are, in fact,
available

subroutine outfilt(asv, nparam, params, ng, outfile)
include ‘/usr/local/inc/exodusll.inc’

integer asv(3), i, nparam, ng

real params(2)

character*12 outfile

real J_cost, g(2)

integer cpu_ws, exopen, exread, io_ws, idexo, ierr
real vers

cpu_ws=0
io_ws=0

¢ page 25 of SAND92-2137
idexo = EXOPEN ("out.exoll", EXREAD, cpu_ws, i0_ws, vers, ierr)
g(1) = params(1) - 370.0
J_cost = costf(idexo)
open(unit=33, file=outfile, status="unknown’)
if (asv(1) .gt. 3) then
write(*,*) ‘Hessian is not available, exiting *
call exit(0)
endif
if (asv(1) .gt. 2) then

write(*,*) ‘Gradient is not available, exiting
call exit(0)

Example Problems Engineering Applications - GOMA/EXODUS Application Example 233

endif

if (asv(1) .eq. 1 .or. asv(1) .eq. 3 .or. asv(1) .eq. 5) then
write(33,*) J_cost, ‘ f’
endif

do 30 i=1,ng

if (asv(i) .gt. 3) then
write(*,*) ‘Hessian is not available, exiting *
call exit(0)

endif

if (asv(i) .gt. 2) then
write(*,*) ‘Gradient is not available, exiting *
call exit(0)

endif

if (asv(i) .eq. 1 .or. asv(i) .eq. 3 .or. asv(i) .eq. 5) then
write(33,%) g(i), ‘ g1’
write(*,*) g(i)

endif

30 continue

end

The last functiongostf() , calculates determines what the value of the solvent at the
substrate is at the end of the simulation (200 sec). It uses a lot of calls from the EXODUS
subroutine library and page numbers in the EXODUS reference guide are give to facilitate
reading the code. The variable exoid is used to reference the EXODUS database file that the
GOMA results will be read from.

real function costf(idexo) _
include ‘/usr/locallinc/exodusll.inc’)
integer cvarind, extims, i, idexo, ntime, nvar, ierr

real redum, time
real time(500), concen(500)
character*(MXSTLN) vname(20)
character cdum
First, we need to know how many variables are in the database

c page 133 SAND92-2137
call EXGVP(idexo, "n", nvar, ierr)

c page 137 SAND92-2137

Next, we read the variable’s names in and determine which one is the one of interest. In this
case we are interestedY®.

do 40 i=1,nvar
if (vname(i) .eq. "Y0") then
cvarind =i
endif
40 continue

Now we find out how many time steps are in the database
¢ page 41 of SAND92-2137

call EXINQ(idexo, EXTIMS, ntime, redum, cdum, ierr)
C page 144 of SAND92-2137

Example Problems Engineering Applications - GOMA/EXODUS Application Example 234

6.

call EXGATM(idexo, time, ierr)

Finally we read in all the values ®D through time and take the last one, then close the file
¢ page 167 of SAND92-2137

call EXGNVT(idexo, cvarind, 8, 1, ntime, concen, ierr)
costf=concen(ntime)

¢ page 27 of SAND92-2137
call EXCLOS(idexo,ierr)

return
end

To compile a FORTRAN program with EXODUS commands in it, execute a command

similar to:
f77 -o dryer dryer.f -lexollv2for -lexollv2c -Inetcdf -Insl

To run the simulation, just type
dakota -i dryer.in

Sit back and watch it run.

Slot Coater Example

The slot coater example utilizes the failure capture option in DAKOTA. There are two ways to
insure a solution throughout the optimization: The first is to set the relaxation schedule very
conservatively and the other is to rely on continuation. By relying on continuation, the
optimization runs significantly faster. In this optimization, there was no relaxation used.

The parameterization used for this example is shown in Figure 3. Only the gap and the angle a
were used in the optimization. The parameters used for the starting point of the optimization
were taken from

Sator (1990)Slot Coating PhD. Thesis University of Minnesota, Available on University
Microfilms, Ann Arbor, Michigan.

Example Problems Engineering Applications - GOMA/EXODUS Application Example 235

L LT T T 7T T 77T 7 7 7 7 7 P 7 7 7 7 P 7 7 7P 7 7 7 7 T 7 7 7 7 7 7 7 7 7 7 7 7 4

-
L3

Figure 3 Slot coat parameterization
The cost function used for this optimization is

_[98.57] 9 28507 9
I = B.02u,,,, "l) " Co.010P, , Ndel)

0.35< Gap<0.7
-0.2<0<0.2

(31)

The design variable, as it is currently set up, is the gap length and thetafgie cost function
was choosen to minimize the sensitivity of the movement of the dynamic contact line to changes
in the webspeed or the back pressure.

Slot Coater Tutorial:

1. As with all the examples before, the first file necessary is the DAKOTA input specification.
This example is identical to all the optimization problems so far except for the specification
of the design variables and the addition of the failure capture command in the interface

specification. The file is calleddot.in . The changed portions of the specification for
this problem is

interface, \

application system, \

input_filter = ‘NO_FILTER’ \

output_filter = ‘NO_FILTER’ \

analysis_driver= ‘slot.sh’ \

parameters_file= ‘params.in’ \

results_file= ‘results.out’ \

analysis_usage = ‘DEFAULT \

failure_capture continuation

HHHHH

Example Problems Engineering Applications - GOMA/EXODUS Application Example 236

variables, \

continuous_design = 2 \
cdv_initial_point 0.05 0.0\
cdv_upper_bounds 0.07 0.2\
cdv_lower_bounds 0.035 -0.2\

cdv_descriptor ‘Gap_new’ ‘alpha_new’

2. The C-shell fileslot.sh , should look pretty familiar also
#! /bin/csh -f
#

This shell file evaluates the cost function
for a dakota run

#

in_filt $argv[1] slot.app

goma -a -i slot_input -se stderr -so stdout

slot $argv[1] $argv[2]

3. The input filtein_filt.c is identical to all the previous input filters.

4. The major difference is in the cost functislot.c . The subroutinesain() and
asv_read() are the same. However, the routmgput_filter() has been changed
to incorporate a failure capturing scheme. There has been add to GOMA four global
variables that indicate the convergence status of the GOMA simulation. They are:

« CONVBoolean convergence (1=> converged, 0=> not converged)
« NEWT_ITNumber of Newton Iterations specified in the GOMA input file
* MAX_ITNumber of Newton Iterations taken by the simulation

« CONVRATEThe log10 relative convergence rate at the second to last and the last iteration
taken

The subroutine converge éfot.c takes care of reading these values. The subroutine

out_filt look like

void output_filter(int *asv, int n_param, double *params, int n_g,
FILE *output_file)

{

char filename[][=GOMA_FILE;

int CPU_word_size, |I0_word_size;
float version;

int exoid, i;

double J_cost;

double *g;

int newt_it, max_it,error;

double convrate;

g=(double *)calloc(n_g ,sizeof(double));

/* page 25 of SAND92-2137 */
/* Open file */

CPU_word_size=sizeof(double);
I0_word_size=0;

This section of the code is the most different. Note how the EXODUS file is opened, then
the convergence is checked. If the simulation didn’t converge, a failure is flagged and the
program exits. If the simulation didn’t converge but it ran out of newton iterations, then the

Example Problems Engineering Applications - GOMA/EXODUS Application Example 237

program exits and a “1” is returned so the shell program can rerun GOMA (not yet
implemented). If it has converged, then it writes the results.out file as before.
exoid=ex_open(filename,EX_READ,&CPU_word_size,&lO_word_size,&version);

error = converge(exoid, &max_it, &newt_it, &convrate);

if (lerror) {
/* determine cost function and constraints*/

system("cp soln.dat contin.dat");

g[0] = - 0.5e-4;
J_cost = cost_fun(exoid);

J_cost=J_cost*J_cost;
printf("J= %g\n",J_cost);
/* write dakota output file */

if (asv[0]>3) {
printf("Hessian is not available, exiting\n");
exit(-1);
}

if (asv[0]>2) {
printf("Gradient is not available, exiting\n");
exit(-1);
}

if (asv[0]==1 || asv[0]==3 ||asVv[0]==5) fprintf(output_file,
"%g f\n",J_cost);
for (i=1;i<=n_g;i++) {
if (asv[i]==1 || asv[i]==3 || asV[i]==5) {
fprintf(output_file,"%g c%d\n",g[i-1],1);
else {

printf("Number of parameters is probably wrong: exiting.\n");
exit(1);
}

return;
if (newt_it == max_it && convrate > 0.0) {
printf("Not converged!! \n");
exit(1);
}
else {

fprintf(output_file,"FAIL\n");
}

free(9);
}

5. Theconverge() routine is fairly basic. It reads the global variables from the EXODUS
database, then sends them back.

int converge(int exoid, int *max_it, int *newt_it, double *convrate)

int i, inewt, iconv, imax, irate;

int ret_int, ntime, nvar, conv;

int error;

char *cdum=0, *gvar_name[NUM_G_VAR];
float fdum;

double gvar[NUM_G_VAR];

error=ex_inquire(exoid, EX_INQ_TIME, &ntime, &fdum, cdum);

Example Problems Engineering Applications - GOMA/EXODUS Application Example 238

error=ex_get_var_param(exoid, "g", &nvar);

for (i=0; i<nvar;i++) gvar_name]i]= (char *) calloc((MAX_LINE+1),
sizeof(char));

error=ex_get_var_names(exoid, "g",nvar, gvar_name);

for (i=0;i<nvar;i++) {
if (strcemp(CON_VAR,gvar_name[i])==0) iconv=i;
if (strcemp(NEWT_VAR,gvar_name[i])==0) inewt=i;
if (stremp(MAX_VAR,gvar_name[i])==0) imax=i;
if (strcemp(RATE_VAR,gvar_name[i])==0) irate=i;

}

/* Page 159 SAND92-2137 */
error=ex_get_glob_vars(exoid, ntime, nvar, gvar);

if (error == 0) {
*newt_it=(int) gvar[inewt];
*max_it=(int) gvar[imax];
*convrate= gvarfirate];
conv=(int) gvarficonv];

else {
*newt_it=-1;
*max_it=-1;
*convrate= -999999.0;
conv=0;

return !conv;

The cost function evaluation subroutigest_fun() , is more complicated. Actually it

isn't that difficult, it just looks that way. Basically there are two fieshspeed.app and
vacuum.app which are read bgost_fun() . First, the nominal position of the dynamic
contact point is read. Procedwest_fun() then perturbs the valueswebspeed.app

and calls GOMA, then reads the perturbed value of the dynamic contact point. This is
repeated for the back pressure. The perturbed values are then used for a finite difference

calculation.
double cost_fun(int exoid_nom)

inti, CPU_word_size, |IO_word_size;

int error, exoid_delta ,idum;

int ns_num_nodes, *ns_node_list;

double fdum, J1, J2;

float version;

double webspeed_nom,webspeed_delt;

double Pvacuum_nom,Pvacuum_delt, g1,92;

double *ns_X,*ns_Y,*ns_Z,*ns_displx_nom, *ns_displx_delt;
char filename[][=GOMA_FILE,cdum[9];

FILE *in_file;

error=ex_get_node_set_param(exoid_nom, NSET, &ns_num_nodes,&idum);
ns_node_list=(int *) calloc(ns_num_nodes,sizeof(int));

error=ex_get_node_set(exoid_nom,NSET, ns_node_list);
ns_X=(double *) calloc(ns_num_nodes,sizeof(double));
ns_Y=(double *) calloc(ns_num_nodes,sizeof(double));
ns_Z=(double *) calloc(ns_num_nodes,sizeof(double));
ns_displx_nom=(double *) calloc(ns_num_nodes,sizeof(double));
ns_displx_delt=(double *) calloc(ns_num_nodes,sizeof(double));

get_displ(exoid_nom,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,

Example Problems Engineering Applications - GOMA/EXODUS Application Example 239

ns_displx_nom);

/******************/

in_file=fopen(WEBFILE,"r");
fscanf(in_file,"${%s = %lf}",cdum,&webspeed_nom);

fclose(in_file);

webspeed_delt=(1.0+FDEPS)*webspeed_nom;
in_file=fopen(WEBFILE,"w");
fprintf(in_file,"${webspeed = %fl\n",webspeed_delt);
fclose(in_file);

system(“/home/prschun/.sun5/bin/goma -a -i slot_input -se
stderr -so stdout”);
[*system(“/home/prschun/.sun5/bin/goma -a -i slot_input”);*/
in_file=fopen(WEBFILE,"w");

fprintf(in_file,"${webspeed = %f;\n",webspeed_nom);
fclose(in_file);

CPU_word_size=sizeof(double);
I0_word_size=0;

exoid_delta=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version);

get_displ(exoid_delta,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
ns_displx_delt);

/***************/

gl= webspeed_nom/Ls;g1=1.0e3;

J1= (ns_displx_delt[0] - ns_displx_nom[0])/(webspeed_delt-webspeed_nom);

/******************/

in_file=fopen(PRESSFILE,"r");

fscanf(in_file,"${%s = %lf}",cdum,&Pvacuum_nom);

fclose(in_file);

Pvacuum_delt=(1.0+FDEPS)*Pvacuum_nom;

in_file=fopen(PRESSFILE,"w");

fprintf(in_file,"${vacuum = %f}\n",Pvacuum_delt);

fclose(in_file);

system(“/home/prschun/.sun5/bin/goma -a -i slot_input -se stderr -so
stdout”);

[*system(“/home/prschun/.sun5/bin/goma -a -i slot_input”);*/
in_file=fopen(PRESSFILE,"w");

fprintf(in_file,"${vacuum = %fH\n",Pvacuum_nom);

fclose(in_file);

CPU_word_size=sizeof(double);
I0_word_size=0;

exoid_delta=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version);
get_displ(exoid_delta,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
ns_displx_delt);
/***************/

g2=abs(Pvacuum_nom/Ls);g2=1.0e7;

J2= (ns_displx_delt[0] - ns_displx_nom][0])/(Pvacuum_delt - Pvacuum_nom);
[*printf("J1 = %e , J2 = %e \n",J1,J2);*/

return ALPHA*J1 + BETA*J2;

6. Now compile the code and run DAKOTA.

Example Problems Engineering Applications - GOMA/EXODUS Application Example 240

Appendix

This appendix will briefly describe the process of using DAKOTA with another analysis driver
such as FIDAP. The procedure is basically identical to when GOMA is used for the analysis.

=

params.in (DAKOTA results.out

cost.sh

Figure A. DAKOTA interface scheme

Set up optimization by writing a DAKOTA input file. (See page 2-4 for example)

Write an input filter to take the file params.in generated by DAKOTA (format of parameter
file is on page 8) and write and output file that can be used by your analysis code. An easy
way to do this is to use APREPRO. If APREPRO is always used, the input filter in_filt.c can
be written generally enough so that it can be used for all optimizations. (see pages 11-13)

Now parameterize your model so that the design variables that you want to vary can be easily
changed by APREPRO. Make sure the output from your code has the information you will
need to evaluate your cost function.

Write a program (out_filt.c) that takes the output from your code, evaluates your cost
function, and writes a file (results.out) that (i) has the information requested from DAKOTA
(this is specified in params.in) and (ii) is in a format that DAKOTA can read. (see pages 13 -
16)

In this tutorial, the programs that result from steps 2-4 are driven by a shell program cost.sh.
DAKOTA, therefore, only has to call the shell program to evaluate the cost function.

Copy to:

MS0826 9111 Dayfile

MS 08269111 W. L. Hermina
MS 08269111 P. R. Schunk
MS0826 9111 R. R. Rao

MS0826 9111 P. A. Sackinger

MS 08349112 T. A. Baer

MS 08269111 D. A. Labreche

MS 05579741 T. W. Simmermacher

Dr. Richard A. Cairncross

Drexel University

Department of Chemical Engineering
Philadelphia, PA 19104

Example Problems Engineering Applications - GOMA/EXODUS Application Example 241

Dr. lan Gates

University of Minnesota

Department of Chemical Engineering and Materials Science
421 Washington Ave. SE

Minneapolis, MN 55455

Additional References

Refer to

« [Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger,
A.G., 1996]

* [Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R.,
and Chen, K.S., 1996]

for procedures and lessons learned in interfacing with complex engineering simulation codes.
Key findings in complex engineering applications are also summarized in [Eldred, M.S., 1998].

Example Problems Engineering Applications - Additional References 242

Anderson, G., and Anderson, P., 1986e UNIX C Shell Field Guid®rentice-Hall, Englewood
Cliffs, NJ.

Byrd, R.H., Schnabel, R.B., and Schultz, G.A., 1P8&llel quasi-Newton Methods for
Unconstrained OptimizatigriMathematical Programming, 42(1988), pp. 273-306.

Coplien, J.O., 199Advanced C++ Programming Styles and IdigrAgddison-Wesley, Reading,
MA.

Dennis, J.E., and Torczon, V.J., 199drivative-Free Pattern Search Methods for
Multidisciplinary Design Problemspaper AIAA-94-4349 in Proceedings of the 5th AIAA/
USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama
City, FL, Sept. 7-9, 1994, pp. 922-932.

Eckstein, J., Hart, W.E., and Phillips, C.A., 19®&source management in a parallel mixed
integer programming packagBroceedings of the 1997 Intel Supercomputer Users Group
Conference (http://www.cs.sandia.gov/ISUG97/program.html), Albuquerque, NM, June 11-13,
1997.

Eldred, M.S., and Schimel, B.D., 1989tended Parallelism Models for Optimization on
Massively Parallel Computerpaper 16-POM-2 in Proceedings of the 3rd World Congress of
Structural and Multidisciplinary Optimization (WCSMO-3), Amherst, NY, May 17-21, 1999.

Eldred, M.S., and Hart, W.E., 198®&sign and Implementation of Multilevel Parallel
Optimization on the Intel TeraFLOPBaper AIAA-98-4707 in Proceedings of the 7th AIAA/
USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis,
MO, Sept. 2-4, 1998, pp. 44-54.

Eldred, M.S., 199®ptimization Strategies for Complex Engineering Applicati@asdia
Technical Report SAND98-0340, Sandia National Laboratories, Albuquerque, NM.

Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G.,
1996Utilizing Object-Oriented Design to Build Advanced Optimization Strategies with
Generic Implementatiqrpaper AIAA-96-4164 in Proceedings of the 6th AIAA/USAF/NASA/
ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, Sept. 4-6,
1996, pp. 1568-1582.

Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R., and
Chen, K.S., 199@ptimization of Complex Mechanics Simulations with Object-Oriented
Software DesignComputer Modeling and Simulation in Engineering, Vol. 1, No. 3, August
1996. Revised and extended from Eldred, M.S., Outka, D.E., Fulcher, C.W., and Bohnhoff,
W.J.,Optimization of Complex Mechanics Simulations with Object-Oriented Software Design
paper AIAA-95-1433 in Proceedings of the 36th AIAA/ASME/ ASCE/AHE/ASC Structures,
Structural Dynamics, and Materials Conference, New Orleans, LA, April 10-13, 1995, pp.
2406-2415.

DAKOTA Manuals 243

Friedman, J. H., 199%ultivariate Adaptive Regression Splindsnals of Statistics, Vol. 19,
No. 1, March 1991, pp. 1-141.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., D88kn Patterns: Elements of
Reusable Object-Oriented Softwafaldison-Wesley, Reading, MA.

Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 198&r's Guide for NPSOL
(Version 4.0): A Fortran Package for Nonlinear ProgrammiSgstem Optimization
Laboratory, TR SOL-86-2, Stanford University, Stanford, CA.

Gill, P.E., Murray, W., and Wright, M.H., 19&4ractical Optimization Academic Press, San
Diego, CA.

Gropp, W., and Lusk, E., 1998ser's Guide for mpich, a Portable Implementation of MPI
Argonne National Laboratory, Mathematics and Computer Science Division, Report ANL/
MCS-TM-ANL-96/6.

Gropp, W., Lusk, E., and Skjellum, A., 1984ing MPI, Portable Parallel Programing with the
Message-Passing Interfac&he MIT Press, Cambridge, MA.

Hart, W.E., 199 5GOPT, A C++ Library of (Stochastic) Global Optimization Algorithms
Sandia Report SAND98-xxxx, Sandia National Laboratories, Albuquerque, NM.

Kernighan, B.W., and Ritchie, D.M., 1988e C Programming Languag8econd Edition,
Prentice Hall PTR, Englewood Cliffs, NJ.

Meza, J.C., 1990OPT++: An Object-Oriented Class Library for Nonlinear Optimizatji@andia
Report SAND94-8225, Sandia National Laboratories, Livermore, CA.

Meza, J.C., and Plantenga, T.D., 1@&imal Control of a CVD Reactor for Prescribed
Temperature BehavipBGandia Technical Report SAND95-8224, Sandia National Laboratories,
Livermore, CA.

Moen, C.D., Spence, P.A., and Meza, J.C., I0pbmal Heat Transfer Design of Chemical
Vapor Deposition ReactorSandia Technical Report SAND95-8223, Sandia National
Laboratories, Livermore, CA.

Moen, C.D., Spence, P.A., Meza, J.C., and Plantenga, T.D., 1996 “Automatic Differentiation for
Gradient-Based Optimization of Radiatively Heated Microelectronics Manufacturing
Equipment”, paper AIAA-96-4118 iRroceedings of the 6th AIAA/JUSAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimizati®ellevue, WA, pp. 1167-1175.

DAKOTA Manuals 244

Ponslet, E.R., and Eldred, M.S., 1996 “Discrete Optimization of Isolator Locations for Vibration
Isolation Systems: an Analytical and Experimental Investigation,” paper AIAA-96-4178 in
Proceedings of the 6th AIAA/JUSAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and OptimizationBellevue, WA, Sept. 4-6, 1996, pp. 1703-1716. Also appears as Sandia
Technical Report SAND96-1169, May 1996.

Schunk, P.R., Sackinger, P.A., Rao, R.R., Chen, K.S., Cairncross, R AGOIA - A Full-
Newton Finite Element Program for Free and Moving Boundary Problems with Coupled Fluid/
Solid Momentum, Energy, Mass, and Chemical Species Transport: User’'s Gaidka
Report SAND95-2937, Sandia National Laboratories, Albuguerque, NM.

Sjaardema, G.D., 199%PREPRO: An Algebraic Preprocessor for Parameterizing Finite
Element Analyse$Sandia Report SAND92-2291, Sandia National Laboratories, Albuquerque,
NM.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J.MPR&he Complete
ReferenceMIT Press, Cambridge, MA.

Tong, C.H., and Meza, J.C., 19BDDOMSDACE: A Distributed Object-Oriented Software with
Multiple Samplings for the Design and Analysis of Computer Experingantslia Technical
Report SAND97-XXXX (draft as yet unpublished).

Vanderplaats Research and Development, T89% Users Manual, Version 4.20hc., Colorado
Springs.

Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E.DE}6 An Object-Oriented
Finite Element Code Architecture for Massively Parallel Compu@&fdND96-0473.

Zimmerman, D.C., 1996&enetic Algorithms for Navigating Expensive and Complex Design
SpacesFinal Report for Sandia National Laboratories contract AO-7736 CA 02, Sept. 1996.

DAKOTA Manuals 245

	DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estima...
	Abstract

	Acknowledgment
	Development of DAKOTA was funded by the Engineering Science Research Foundation, the Computer Sci...
	The development of this software involved many technical staff and contractors across Sandia- Alb...
	The authors also greatly appreciate the helpful comments made by Ben Blackwell and Todd Simmermac...

	Documentation Versions
	Since the DAKOTA architecture is flexible and extensible, its capabilities are continuously evolv...
	The software documentation can be published using either hardcopy or online formats. The hardcopy...
	http://endo.sandia.gov/DAKOTA/papers/Dakota_online.pdf
	Contact the authors at mseldre@sandia.gov if problems are encountered in accessing this file.

	Table of Contents
	Table of Contents 5
	List of Figures 14
	List of Tables 15
	DAKOTA Introduction 17
	Capability Introduction 52
	Optimization Capabilities 54
	Uncertainty Assessment Capabilities 58
	Nonlinear Least Squares Capabilities 60
	Parameter Study Capabilities 62
	Strategy Capabilities 70
	Simulation Interfacing 77
	Exploiting Parallelism 99
	Commands Introduction 112
	Interface Commands 127
	Variables Commands 134
	Responses Commands 141
	Strategy Commands 150
	Method Commands 156
	Installation Guide 180
	Installation Examples 187
	Textbook Example 192
	Rosenbrock Example 204
	Cylinder Head Example 208
	Engineering Applications 216

	List of Figures
	Figure 1. Container wall-to-end-cap seal. 20
	Figure 2. A graphical representation of the container optimization problem. 22
	Figure 3. Fortran listing of the interface for the container example. 24
	Figure 4. C language listing of the container simulator example. 25
	Figure 5. C++ listing of the container optimization example 26
	Figure 6. DAKOTA input file for the container optimization example. 28
	Figure 7. Example DAKOTA output 32
	Figure 8. DAKOTA input file for the parallel container optimization example. 39
	Figure 9. UNIX shell script file for parallel DAKOTA. 40
	Figure 10. Sample output results for a parallel DAKOTA run 41
	Figure 11. Generalizations of optimizer constraint handling capabilities. 45
	Figure 12. Iterator and Strategy Hierarchies 52
	Figure 13. Example centered parameter study. 67
	Figure 14. Example multidimensional parameter study 68
	Figure 15. Uncoupled multilevel hybrid optimization strategy 72
	Figure 16. Uncoupled adaptive multilevel hybrid optimization strategy 73
	Figure 17. Sequential approximate optimization strategy 75
	Figure 18. The DakotaInterface class hierarchy 78
	Figure 19. The Application Interface Concept 79
	Figure 20. Parameters file data format, standard option 86
	Figure 21. Parameters file data format, APREPRO option 88
	Figure 22. Results file data format 89

	List of Tables
	Table 1. Constraints 44
	Table 2. Variables 46
	Table 3. Local vs. global 47
	Table 4. Smooth vs. nonsmooth 48
	Table 5. Algorithmic parallelism 49
	Table 6. All inclusive summary 50
	Table 7. Other method and strategy classifications 51
	Table 8. Request vector codes 87
	Table 9. Specification detail for set identifier 129
	Table 10. Specification detail for application interfaces 129
	Table 11. Additional specifications for system call application interfaces 131
	Table 12. Additional specifications for direct application interfaces 132
	Table 13. Specification detail for approximation interfaces 132
	Table 14. Specification detail for test interfaces 133
	Table 15. Specification detail for set identifier 136
	Table 16. Specification detail for continuous design variables 137
	Table 17. Specification detail for discrete design variables 137
	Table 18. Specification detail for uncertain variables specification 138
	Table 19. Specification detail for continuous state variables 139
	Table 20. Specification detail for discrete state variables 140
	Table 21. Specification detail for set identifier 143
	Table 22. Specification detail for active set vector usage specification 144
	Table 23. Specification detail for optimization data sets 145
	Table 24. Specification detail for nonlinear least squares data sets 145
	Table 25. Specification detail for generic response function data sets 146
	Table 26. Specification detail for numerical gradients 147
	Table 27. Specification detail for mixed gradients 148
	Table 28. Specification detail for single_method strategies 152
	Table 29. Specification detail for uncoupled multi_level strategies 153
	Table 30. Specification detail for coupled multi_level strategies 153
	Table 31. Specification detail for seq_approximate_opt strategies 154
	Table 32. Specification detail for opt_under_uncertainty strategies 154
	Table 33. Specification detail for branch_and_bound strategies 155
	Table 34. Specification detail for the method independent controls 160
	Table 35. Specification detail for the DOT methods 162
	Table 36. Specification detail for the NPSOL SQP method 164
	Table 37. Specification detail for the OPT++ conjugate gradient method 167
	Table 38. Specification detail for unconstrained and bound-constrained Newton-based OPT++ methods...
	Table 39. Specification detail for barrier-constrained Newton OPT++ methods 167
	Table 40. Specification detail for the OPT++ bound constrained ellipsoid method 168
	Table 41. Specification detail for the OPT++ PDS method 168
	Table 42. Specification detail for OPT++ new method testing 168
	Table 43. Specification detail for SGOPT method dependent controls 170
	Table 44. Specification detail for the SGOPT GA methods 171
	Table 45. Specification detail for SGOPT real GA crossover and mutation 171
	Table 46. Specification detail for SGOPT integer GA crossover and mutation 172
	Table 47. Specification detail for the SGOPT CPS methods 172
	Table 48. Specification detail for the SGOPT Solis-Wets method 174
	Table 49. Specification detail for the SGOPT sMC method 174
	Table 50. Specification detail for the Monte Carlo probability method 175
	Table 51. Specification detail for the mean value method 176
	Table 52. final_point specification detail for the vector parameter study 177
	Table 53. step_vector specification detail for the vector parameter study 177
	Table 54. Specification detail for the list parameter study 178
	Table 55. Specification detail for the centered parameter study 179
	Table 56. Specification detail for the multidimensional parameter study 179
	DAKOTA Introduction
	Motivation
	What is DAKOTA?
	Tutorial
	Getting started
	A basic optimization problem
	Figure 1 Container wall-to-end-cap seal.
	(1)
	(2)
	(3)
	(4)
	Figure 2 A graphical representation of the container optimization problem.

	(5)

	Constructing the interface
	Figure 3 Fortran listing of the interface for the container example.
	Figure 4 C language listing of the container simulator example.
	Figure 5 C++ listing of the container optimization example

	Creating a DAKOTA input file
	Figure 6 DAKOTA input file for the container optimization example.

	Running DAKOTA
	Interpreting the results
	Figure 7 Example DAKOTA output

	Some useful features of DAKOTA
	Restarting DAKOTA
	The parallel interface
	Figure 8 DAKOTA input file for the parallel container optimization example.
	Figure 9 UNIX shell script file for parallel DAKOTA.
	Figure 10 Sample output results for a parallel DAKOTA run

	Decision Tables for DAKOTA Methods and Strategies

	Table 1 Constraints
	Figure 11 Generalizations of optimizer constraint handling capabilities.

	Table 2 Variables
	Table 3 Local vs. global
	Table 4 Smooth vs. nonsmooth
	Table 5 Algorithmic parallelism
	Table 6 All inclusive summary
	Table 7 Other method and strategy classifications
	Capability Introduction
	Iterator and Strategy Hierarchies
	Figure 12 Iterator and Strategy Hierarchies

	Optimization Capabilities
	Introduction
	DOT Library
	NPSOL Library
	OPT++ Library
	SGOPT Library

	Uncertainty Assessment Capabilities
	Introduction
	Monte Carlo Probability
	Mean Value

	Nonlinear Least Squares Capabilities
	Introduction
	Gauss-Newton

	Parameter Study Capabilities
	Introduction
	Initial Values
	Data Cataloguing

	Vector Parameter Study
	List Parameter Study
	Centered Parameter Study
	Figure 13 Example centered parameter study.

	Multidimensional Parameter Study
	(6)
	Figure 14 Example multidimensional parameter study

	Strategy Capabilities
	Introduction
	Single Method
	Multilevel Hybrid Optimization
	The Uncoupled Approach
	Figure 15 Uncoupled multilevel hybrid optimization strategy

	The Uncoupled Adaptive Approach
	Figure 16 Uncoupled adaptive multilevel hybrid optimization strategy

	The Coupled Approach

	Sequential Approximate Optimization
	Figure 17 Sequential approximate optimization strategy

	Optimization Under Uncertainty
	Branch and Bound

	Simulation Interfacing
	Dakota Interface Abstraction
	Figure 18 The DakotaInterface class hierarchy

	The Application Interface
	Figure 19 The Application Interface Concept

	The Direct Function Application Interface
	1. the functions to be invoked must have their main programs changed into callable functions with...
	2. the if-else blocks in DirectFnApplicInterface::execute() must be extended to include the new f...
	3. the DAKOTA system must be recompiled and linked with the new function object files or libraries
	3-piece Interface
	1-piece Interface

	The System Call Application Interface
	3-piece Interface
	1-piece Interface
	Additional Features
	File saving
	File tagging
	Unix temporary files
	Common filtering operations

	Examples
	The NO_FILTER option
	The named filter option

	DAKOTA File Data Formats
	Parameters file format (standard)
	Figure 20 Parameters file data format, standard option

	Table 8 Request vector codes
	Parameters file format (APREPRO)
	Figure 21 Parameters file data format, APREPRO option

	Results file format
	Figure 22 Results file data format

	Active set vector control
	Examples
	Failure capturing
	Failure detection
	Failure communication
	System call application interfaces
	Direct application interfaces

	Failure recovery
	Abort
	Retry
	Recover
	Continuation

	The Approximation Interface
	Building an approximation
	Updating an approximation
	Modifying an approximation
	Performing function evaluations

	The RSM Approximation Interface
	(7)

	The MARS Approximation Interface
	The ANN Approximation Interface
	Exploiting Parallelism
	Parallelism Introduction
	1. Algorithmic coarse-grained parallelism: This parallelism involves the exploitation of multiple...
	2. Algorithmic fine-grained parallelism: This involves computing the basic computational steps of...
	3. Function evaluation coarse-grained parallelism: This involves simultaneous computation of sepa...
	4. Function evaluation fine-grained parallelism: This involves parallelization of the solution st...

	Enabling Software Components
	Direct function synchronization
	Synchronous
	Asynchronous

	System call synchronization
	Synchronous
	Asynchronous

	Master-slave algorithm
	Single-level parallelism
	Multilevel parallelism
	Pending Extensions

	Implementation of Parallelism
	Single-processor DAKOTA implementation
	Multiprocessor DAKOTA implementation

	Specifying Parallelism
	The Model
	The Iterator
	Single-processor DAKOTA specification
	Multiprocessor DAKOTA specification

	Running a parallel DAKOTA job
	Single-processor DAKOTA execution
	Multiprocessor DAKOTA execution
	Caveats

	Commands Introduction
	Overview
	IDR Input Specification File
	1. In the input specification, required parameters are enclosed in {}’s, optional parameters are ...
	2. Keyword specifications (i.e., strategy, method, variables, interface, and responses) are delim...
	3. Each of the five keyword specifications begins with a <KEYWORD = name>, <FUNCTION = handler_na...
	4. Some of the specifications within a keyword indicate that the user must supply <INTEGER>, <REA...
	5. Input is order-independent (except for entries in data lists) and white-space insensitive. Alt...
	6. Specifications may be abbreviated so long as the abbreviation is unique. For example, the appl...
	7. Comments are preceded by #.
	Common Specification Mistakes
	1. Documentation of new capability can lag the use of new capability in executables. When parsing...
	2. Since keywords are terminated with the newline character, care must be taken to avoid followin...
	3. Care must be taken to include newline escapes when embedding comments within a keyword specifi...

	Sample dakota.in Files
	Sample 1: Optimization
	Sample 2: Least Squares
	Sample 3: Nondeterministic Analysis
	Sample 4: Parameter Study
	Sample 5: Multilevel Hybrid Strategy

	Running DAKOTA
	Executable Location
	Remote installations
	Sandia developer-supported installations

	Command Line Inputs
	Execution Syntax
	Input/Output Management
	Restart Management

	Tabular descriptions

	Interface Commands
	Description
	Specification
	Set Identifier

	Table 9 Specification detail for set identifier
	Application Interface

	Table 10 Specification detail for application interfaces
	Table 11 Additional specifications for system call application interfaces
	Table 12 Additional specifications for direct application interfaces
	Approximation Interface

	Table 13 Specification detail for approximation interfaces
	Test Interface

	Table 14 Specification detail for test interfaces
	Variables Commands
	Description
	Specification
	Set Identifier

	Table 15 Specification detail for set identifier
	Design Variables

	Table 16 Specification detail for continuous design variables
	Table 17 Specification detail for discrete design variables
	Uncertain Variables

	Table 18 Specification detail for uncertain variables specification
	State Variables

	Table 19 Specification detail for continuous state variables
	Table 20 Specification detail for discrete state variables
	Responses Commands
	Description
	Specification
	Set Identifier

	Table 21 Specification detail for set identifier
	Active Set Vector Usage

	Table 22 Specification detail for active set vector usage specification
	Function specification
	Objective and Constraint Functions (Optimization Data Set)

	Table 23 Specification detail for optimization data sets
	Least Squares Terms (Least Squares Data Set)

	Table 24 Specification detail for nonlinear least squares data sets
	Response Functions (Generic Data Set)

	Table 25 Specification detail for generic response function data sets
	Gradient specification
	No Gradients
	Numerical Gradients

	Table 26 Specification detail for numerical gradients
	Analytic Gradients
	Mixed Gradients

	Table 27 Specification detail for mixed gradients
	Hessian specification
	No Hessians
	Analytic Hessians

	Strategy Commands
	Description
	Specification
	Single Method Commands

	Table 28 Specification detail for single_method strategies
	Multilevel Hybrid Optimization Commands

	Table 29 Specification detail for uncoupled multi_level strategies
	Table 30 Specification detail for coupled multi_level strategies
	Sequential Approximate Optimization Commands

	Table 31 Specification detail for seq_approximate_opt strategies
	Optimization Under Uncertainty Commands

	Table 32 Specification detail for opt_under_uncertainty strategies
	Branch and Bound Commands

	Table 33 Specification detail for branch_and_bound strategies
	Method Commands
	Description
	Specification
	Method Independent Controls

	Table 34 Specification detail for the method independent controls
	DOT Methods
	Method independent controls
	Method dependent controls

	Table 35 Specification detail for the DOT methods
	NPSOL Method
	Method independent controls
	Method dependent controls

	Table 36 Specification detail for the NPSOL SQP method
	OPT++ Methods
	Method independent controls
	Method dependent controls

	Table 37 Specification detail for the OPT++ conjugate gradient method
	Table 38 Specification detail for unconstrained and bound-constrained Newton-based OPT++ methods
	Table 39 Specification detail for barrier-constrained Newton OPT++ methods
	Table 40 Specification detail for the OPT++ bound constrained ellipsoid method
	Table 41 Specification detail for the OPT++ PDS method
	Table 42 Specification detail for OPT++ new method testing
	SGOPT Methods
	Method independent controls
	Method dependent controls

	Table 43 Specification detail for SGOPT method dependent controls
	Genetic algorithms (GAs)

	Table 44 Specification detail for the SGOPT GA methods
	Table 45 Specification detail for SGOPT real GA crossover and mutation
	Table 46 Specification detail for SGOPT integer GA crossover and mutation
	Coordinate pattern search (CPS)

	Table 47 Specification detail for the SGOPT CPS methods
	Solis-Wets

	Table 48 Specification detail for the SGOPT Solis-Wets method
	Stratified Monte Carlo

	Table 49 Specification detail for the SGOPT sMC method
	Nondeterministic Methods
	Monte Carlo Probability Method

	Table 50 Specification detail for the Monte Carlo probability method
	Mean Value Method

	Table 51 Specification detail for the mean value method
	Parameter Study Methods
	Vector Parameter Study

	Table 52 final_point specification detail for the vector parameter study
	Table 53 step_vector specification detail for the vector parameter study
	List Parameter Study

	Table 54 Specification detail for the list parameter study
	Centered Parameter Study

	Table 55 Specification detail for the centered parameter study
	Multidimensional Parameter Study

	Table 56 Specification detail for the multidimensional parameter study
	Installation Guide
	Distributions and Checkouts
	Basic Installation
	Configuration Details
	1. Makefile.${target_vendor}
	2. Makefile
	3. config.status
	Configuring with specific vendor optimizers
	Configuring with the Message Passing Interface

	Makefile Details
	Caveats
	Intel cross-compilation
	System modifications

	Installation Examples
	Sun Solaris platform

	Textbook Example
	Textbook Problem Formulation
	(8)
	(9)
	(10)
	(11)
	(12)
	(13)

	Methods
	Results
	Optimization
	Least Squares

	Rosenbrock Example
	Rosenbrock Problem Formulation
	(14)
	(15)
	(16)
	(17)

	Methods
	Results

	Cylinder Head Example
	Cylinder Head Problem Formulation
	(18)
	(19)
	(20)
	(21)
	(22)
	(23)
	(24)
	(25)
	(26)
	(27)
	(28)

	Methods
	Optimization Results

	Engineering Applications
	Transportation Cask Example
	GOMA/EXODUS Application Example
	Standard text_book example
	(29)

	Example text_book recast in GOMA format: Filter Introduction
	DAKOTA Filter Tutorial
	(30)
	1. Change directories into the “tutorial” directory (this location will depend on the course you ...
	2. You will notice the directory contains five files: in_filt.c, out_filt.c, dak_goma.h, cost.sh,...
	3. Now execute the command:
	4. Now look at the input filter using the command:
	5. The final file is the output filter (out_filt.c). Normally, it reads an EXODUS file to get the...
	6. To compile a program with EXODUS subroutines in it, excute a command similar to:
	7. Now the optimization can be run. To execute the optimization, issue the command:

	Dryer Design Example
	1. There are a few differences in the input specification to DAKOTA. The specification is in drye...
	2. The shell function dryer.sh is identical to cost.sh described above except for the GOMA evalua...
	3. The input filter is identical. To check this execute:
	4. The simulation is identical to the template dryer.ml provided to you in your distribution. If ...
	5. The major changes are in the output filter, dryer.c for this problem. Only the cost function e...
	6. To compile a program with EXODUS subroutines in it, execute a command similar to:
	7. To run the simulation, just type:
	8. Sit back and watch it run.
	1. The input specification, dryer.in, for DAKOTA is as follows:
	2. The input filter in FORTRAN is a little less general than the one written in C. It is not easy...
	3. The function that evaluates the cost function, dryer.f, is now described. As with the input fi...
	4. To compile a FORTRAN program with EXODUS commands in it, execute a command similar to:
	5. To run the simulation, just type
	6. Sit back and watch it run.

	Slot Coater Example
	(31)
	1. As with all the examples before, the first file necessary is the DAKOTA input specification. T...
	2. The C-shell file, slot.sh, should look pretty familiar also
	3. The input filter in_filt.c is identical to all the previous input filters.
	4. The major difference is in the cost function, slot.c. The subroutines main() and asv_read() ar...
	5. The converge() routine is fairly basic. It reads the global variables from the EXODUS database...
	6. Now compile the code and run DAKOTA.

	Appendix
	1. Set up optimization by writing a DAKOTA input file. (See page 2-4 for example)
	2. Write an input filter to take the file params.in generated by DAKOTA (format of parameter file...
	3. Now parameterize your model so that the design variables that you want to vary can be easily c...
	4. Write a program (out_filt.c) that takes the output from your code, evaluates your cost functio...
	5. In this tutorial, the programs that result from steps 2-4 are driven by a shell program cost.s...

	Additional References
	Anderson, G., and Anderson, P., 1986
	Byrd, R.H., Schnabel, R.B., and Schultz, G.A., 1988
	Coplien, J.O., 1992
	Dennis, J.E., and Torczon, V.J., 1994
	Eckstein, J., Hart, W.E., and Phillips, C.A., 1997
	Eldred, M.S., and Schimel, B.D., 1999
	Eldred, M.S., and Hart, W.E., 1998
	Eldred, M.S., 1998
	Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G., 1996
	Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R., and Chen...
	Friedman, J. H., 1991
	Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995
	Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986
	Gill, P.E., Murray, W., and Wright, M.H., 1981
	Gropp, W., and Lusk, E., 1996
	Gropp, W., Lusk, E., and Skjellum, A., 1994
	Hart, W.E., 1997
	Kernighan, B.W., and Ritchie, D.M., 1988
	Meza, J.C., 1994
	Meza, J.C., and Plantenga, T.D., 1995
	Moen, C.D., Spence, P.A., and Meza, J.C., 1995
	Moen, C.D., Spence, P.A., Meza, J.C., and Plantenga, T.D., 1996
	Ponslet, E.R., and Eldred, M.S., 1996
	Schunk, P.R., Sackinger, P.A., Rao, R.R., Chen, K.S., Cairncross, R.A., 1995
	Sjaardema, G.D., 1992
	Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., 1996
	Tong, C.H., and Meza, J.C., 1997
	Vanderplaats Research and Development, 1995
	Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 1996
	Zimmerman, D.C., 1996

